Reliability Evaluation for the Surface to Air Missile Weapon Based on Cloud Model

Jianjun Deng 1,a, Lin Zhang 1, Da Wu 1
1 Air and Missile Defense College, Air Force Engineering University in Xi’an, China

Abstract. The fuzziness and randomness is integrated by using digital characteristics, such as Expected value, Entropy and Hyper entropy. The cloud model adapted to reliability evaluation is put forward based on the concept of the surface to air missile weapon. The cloud scale of the qualitative evaluation is constructed, and the quantitative variable and the qualitative variable in the system reliability evaluation are corresponded. The practical calculation result shows that it is more effective to analyze the reliability of the surface to air missile weapon by this way. The practical calculation result also reflects the model expressed by cloud theory is more consistent with the human thinking style of uncertainty.

1 Introduction

The reliability is one of the important indexes of the surface to air missile weapon, it is an important part of tactical and technical indexes. The low index would affect operational use of missile weapon, the over high indexes are difficult to achieve, so equipment developing cost and cycle are increased, even lead to failure of developing work. The rational evaluation of reliability is an important problem of general demonstration for weapon system [1]. How to evaluate the reliability scientifically and effectively has become an important task of the reliability work. The conventional reliability evaluation uses an accurate count as reliability index regarding the parameter as an accurate count, which is inconsistent with the actual situation for the uncertainty of the reliability data. The evaluation is not accurate. The cloud theory is developing rapidly since it is put forward by Professor Deyi Li [2]. The transformation between qualitative concept and quantitative representation with cloud theory can overcome the theory defect caused by the results without fuzziness got by the fuzzy mathematics. It is more reasonable and effective to deal with the uncertain knowledge [3]. This paper analyses the reliability of surface to air missile weapon system with cloud model theory, which is used for describing the uncertain reliability data, evaluating the reliability of missile weapon system. The reliability index in the form of cloud model was got, realizing the transformation from the vague description to specific figures of the system reliability.

2 The reliability evaluation of the Surface to air missile

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
3 Basic theory of the cloud model

3.1 Definition of the cloud model

Definition: Let $U=\{u\}$ as the discourse domain and U is the common set, and A is a fuzzy set in U. The membership degree of any element u in U to the fuzzy set $A, \mu_x(u)$ take the value in $[0,1]$ and the value is a stochastic number in a stability trend. A cloud is the mapping from the discourse domain U to $[0,1]$. It is shown as follows,

$$\mu_x(u) : U \rightarrow [0,1]; \forall u \in U, u \rightarrow \mu_x(u)$$

So the random distribution of $\mu_x(u)$ in U forms a membership cloud. If the elements of discourse domain are simple and orderly, then U is the basic variable, the degree of membership distribution in U is defined as membership cloud. If the elements of discourse domain is not simple and orderly, then U is mapped to other orderly discourse domain U' by a given rule f, one only one u' in U' corresponding to u in U, so U' is the basic variable, the degree of membership distribution in U' is defined as membership cloud[5].

3.2 The digital characteristics of cloud model

Cloud model has three digital characteristics: Entropy (E_s), Expected value (E_a) and Hyper-Entropy (H_a). The most extensive used cloud model is normal cloud model. The expect value E_a is the most representative point of qualitative concept, the Entropy E_s represents the measure of uncertainty, the greater value of the entropy is, the wider of the concept number range is, the fuzzier the concept is. The Hyper-Entropy H_a is the uncertainty measure of E_s, which reflect the cohesion of uncertainty[5], the greater value of the Hyper-Entropy is, the greater value of the membership randomness is, the thicker the cloud is. Cloud model and its digital characteristics are shown in Figure2. It is shown that the fuzziness and randomness are integrated by three digital characteristics of cloud model, the mapping qualitative and quantitative is constituted.

3.3 The Algorithm of cloud model

The algorithm of forward normal cloud generator is shown as follows:

Input: the qualitative concept with Expected value E_a, Entropy E_s and Hyper entropy H_a, and the number of cloud droplet is given.

Output: the quantitative location in number field of N cloud droplet and degree of certainty represented for the concept of each cloud droplet.

Algorithm:
(1)Generating a normal random number with mean value E_a, standard deviation H_a, the number is E_a;
(2)Generating a normal random number with mean value E_a, standard deviation E_s, the number is x;
(3)Let x is a concrete quantization value of quantitative concept, it is cloud droplet;
(4) Computing $y= e^{-\frac{x^2}{2H_a}}$;
(5)Let y is the membership degree of qualitative concept of x;
(6)The whole content of transformation between qualitative and quantitative is reflected by (x,y);
(7) Step (1)~(6) is repeated until N cloud droplet are generated.

The algorithm can be calculated by MATLAB.
\[E_o = (E_{x1} + E_{x2} + \ldots + E_{xn}) \]

(4)

4.2 Express the system station with many performance indexes with the cloud model

Many of the system’s performance indexes can be depicted by lots of cloud model, every index own its corresponding weight, so the system station can be expressed by the comprehensive cloud model. The comprehensive cloud model of two indexes considering corresponding weight can be got by the Eq5 and Eq6.

Definition: given the two cloud \(C_1 \) and \(C_2 \) on domain, described as the \(C_1 (E_{x1}, E_{n1}, H_e) \) and \(C_2 (E_{x1}, E_{n1}, H_e) \) respectively, and the other constant \(\lambda \), the equation can be pushed out based on the arithmetic rule of cloud as follows[6]:

\[C_1 + C_2 = (E_{x1} + E_{x2}, \sqrt{E_{x1}^2 + E_{x2}^2}, \sqrt{H_{e1}^2 + H_{e2}^2}) \]

(5)

\[\lambda C = (\lambda E_{x1}, \lambda E_{n1}, \lambda H_e) \]

(6)

In a similar way, multiple indexes comprehensive cloud model can be reasoned by the above equations.

4.3 Remark set based on the evaluation of cloud model

Use the remark set which consist of 11 remarks [7]: (extremely bad, worst, worse, bad, poor, normal, good, better, very good, best, extremely good) compose a evaluation cloud generator, as shown in Figure3.

![Figure 3. Evaluation cloud generator](image)

5 Application of the cloud model

The reliability evaluation of surface to air missile system use expert evaluation method to evaluate the four parts’ reliability. The result is shown in Table1

<table>
<thead>
<tr>
<th>Search system</th>
<th>Guidance system</th>
<th>Launch system</th>
<th>Missile system</th>
</tr>
</thead>
<tbody>
<tr>
<td>expert1</td>
<td>normal</td>
<td>poor</td>
<td>better</td>
</tr>
<tr>
<td>expert2</td>
<td>good</td>
<td>normal</td>
<td>very good</td>
</tr>
<tr>
<td>expert3</td>
<td>very good</td>
<td>better</td>
<td>best</td>
</tr>
</tbody>
</table>

Table 1. Reliability evaluation of the surface to air missile.

Through the cloud generator, the corresponding cloud model’s \(E_o \) of the experts evaluation result’s linguistic values can serve as the quantitative express result, as shown in Table 2.

<table>
<thead>
<tr>
<th>Expert</th>
<th>Search system</th>
<th>Guidance system</th>
<th>Launch system</th>
<th>Missile system</th>
</tr>
</thead>
<tbody>
<tr>
<td>expert 1</td>
<td>0.5</td>
<td>0.4</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>expert 2</td>
<td>0.6</td>
<td>0.5</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>expert 3</td>
<td>0.8</td>
<td>0.7</td>
<td>0.9</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table 2. Quantitative representation of the evaluation value.

6 Conclusions

According to the cloud figures of reliability evaluation, the reliability evaluation based on the cloud model can be handled easily and used universally. The result is expressed by linguistic value, and is a distribution map showing the randomness and fuzziness of the reliability

![Figure 4. The cloud result of reliability evaluation](image)
evaluation results [8]. The cloud model of reliability evaluation is more intuitive, more scientific and more in accordance with the human thinking mode.

References

8. B. Liu, H. Li, Control. Decis, 24, 957 (2009)