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Abstract. In the grade control panel area, when the sampling grid is less than the size of block, the grade is highly 
smoothed and has very minor variability with the actual “true” value interpolated by Kriging, which is completely 
different with the actual block grade and tonnage-grade model. In this paper, the optimized the grade distribution and 
spatial variability were studies by conditional simulation in the Selective Mining Unit (SMU), avoiding the high 
smoothing effect by linear estimation.  

1 INTRODUCTION 

Geostatistics mainly consists of two important fields 
which are the conditional simulation and kriging. In 
recent years, the trend of geostatistics study is turning 
from linear or nonlinear Kriging theory to the conditional 
simulation. Kriging is mainly used to estimate the global 
Mineral Resources/ Ore Reserves, but due to the high 
over smoothing effect, kriging is not suitable for local or 
recoverable Resource/Ore Reserve estimation. However, 
conditional simulation has more features on the 
variability of spatial data with the same statistical 
characteristics of original data. Therefore, the two 
different fields represent two different aspects in one 
same thing, and are not conflicting but complementary.  

2 Principle of Conditional Simulation  

2.1 Conditional Simulation 

Set Z(x) as the regional variable meeting two order 
stationarity assumption, E[Z(x)=m), with covariance 
function C(h) and variogram ( )h� . To determine Z(x)’s 
conditional simulation Zsc(x), it is to identify an 
achievement of isomorphism regional variable Zsc(x) 
with Z(x) which is equal to the measured value on the 
measured point x0, that is  
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Here, Z(x) and Z(x) belong to isomorphism, which 
means they have the same mathematical expectation and 

the same distribution histogram, as well as the same C(h) 

or ( )h� .  
 In order to get the equation of conditional simulation 

ZSC(x), it should use kriging estimate and unconditional 
simulation ( )

S
Z h . 

The true value of Z(x) at any point x  , can be 
expressed as sum of kriging estimate and its error, that is  
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In which, R(x) is the unknown error in kriging estimate 
during unconditional simulation. Here kriging error only 
depends on the data structure and orthogonal to kriging 
estimate, and then,  
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  The equation of conditional simulation  Zsc(x) can be 

get by *( ) ( )
SK

Z x Z x
s

�  of isomorphism and independent 
unconditional simulation of kriging error to replace the 

*( ) ( )
SK

Z x Z x�  in the Eq. 3, of which  Zs(x) is 

unconditional simulation, and * ( )
SK

Z x  is the kriging 
estimate of Z S(x). 
  When considering isomorphism unconditional 
simulation  Zs(x) with Z(x), once getting the achievement 
of  ZS(x) the unconditional simulation value of 

� � , 1,  2, ,  
S a

Z x a n� � , can be calculated on the 
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observation point 
a

x . When kriging is applied to 

� �� �, 1,2, ,
S a

Z x a n� � , it will get kriging estimate � �*
SK

Z x

and kriging error � � � �*
K
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� �
	 
� �

� . Because � �
S

Z x and Z(x)

are isomorphism, the both Kriging weight coefficient 
a

�
are the same, here
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Further, the kriging error � � � �*
K

Z x Z xs
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kriging error � � � �*
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unconditional simulation. In Eq.3, � � � �*
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simulation of � � � �*
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independent. � � � �*
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Z x Z x� can be calculated actually, 
and also can be replaced the actual kriging error 

� � � �*
K

Z x Z x
� �
	 
� �

� in Eq. 2. By this time the demined Z(x) is 
the Z(x)’s conditional simulation value, not Z(x) . 
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Both Z(x) and Z(x) have the same variogram , and data 

structures of kriging estimate � �*
SK

Z x and � �*
K

Z x are 
also the same , therefore the kriging equations are the 
same, further getting the same solutions of equations and 
same weight coefficient ( 1, 2, , )

a
a n� � � . Put Eq. 4 

into Eq. 5, get,
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Based on all above, to calculate the conditional 

simulation ( )Z x
sc

value, first it requires the value of 

unconditional simulation � �
S

Z x , and then it need carry 
out the kriging estimate for the difference between the 
measured values � � � � � �, 1,2, ,

a S a
Z x Z x a n

� �
	 
� �� � � on point 

a
x , and then ZSC(x) is equal the both values together. 

2.2 Gaussian anamorphosis

The Gaussian anamorphosis is a mathematical function 
which transforms a variable Y with a Gaussian 
distribution in a new variable Z with any distribution: 

( )Y�� � . For mathematical reasons this function can be 
conveniently written as a polynomial expansion:
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Y H Y
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i

�
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                     (7)  

In Eq. 7, Hermite Polynomial is as, 

22
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    (8)

Hermite polynomial belongs to a special orthogonal 
polynomial. In practice, this polynomial is divided into 
several intervals, not with strictly increasing relationship. 

i
� is the expansion coefficient in Hermite Polynomial.

3 Case Study  

3.1 Conditional Simulations on Grade Control 
Panel 

The basic dataset of grade control panel includes 
horizontal holes, distributing from north to south with 
different elevation levels (304,310, 313,316, 319,322 and 
325m). Total of 916 holes were drilled, with 7538 assay 
record. The drilling grid in the long section is of around 
33×3m.

After top_cutting, the basic statistics of the composites 
samples are that number of composites is 3038, the 
minimum value is of 0.00, maximum value is of 74.20,
average grade is of 7.69, standard deviation is of 6.90 and 
the variation coefficient is of 0.90. 

The main steps of conditional simulation are 
summarized as following: 

The interval of raw samples was round of 1m, and all 
the raw samples were composted to 2m to reduce the 
nugget

Top_cutting analysis for the 2m composites
Build variogram of the Gaussian transformation 
Create 3D grid with SMU size of 5×2×3m
Conduct the Kriging neighborhood analysis of 

Gaussian model 
Based on the Gaussian model, do 10 numbers of 

conditional simulation 
Fig. 1 shows the histogram of raw Au composites. Fig. 

2 gives the Gaussian transformation model after top 
cutting on 2m composites. The basic statistics of 
Gaussian Au are presented in Fig. 3. Fig. 4 illustrates the 
experimental varigoram and variogram fitting in three 
axes by spherical mode.

As expected, the spatial variable Au has a certain 
variability characteristics in the grade control domain. 
The average grade is ranging from 8.27g/t to 8.95g/t, at 
total average grade of 8.68g/t and the total average 
standard deviation value of around 6.64, as shown in Fig. 
5. The plot in the East-West direction is shown in Fig. 6, 
which shows the grade variability for the 10 sets of 
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conditional simulations. Fig. 7, Fig. 8 and Fig. 9 show
grade spatial variability on different conditional 
simulation.
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Fig. 1: Histogram of raw Au
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Fig. 2: Au Gaussian transformation model on 2m Composites
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Fig. 3: Histogram of Gaussian Au
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Fig. 5: Au Mean and Standard Deviation in Each Conditional 
Simulation

Fig. 6: Grade Trending in East-West Direction for 10 sets of 
Conditional Simulation

Fig. 7: Au Grade Distribution on Conditional Simulation 2

Fig. 8: Au Grade Distribution on Conditional Simulation 8

Fig. 9: Au Grade Distribution on Conditional Simulation 10
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Fig. 10: Grade-Tonnage Curve of Conditional Simulation

3.2 Resource Estimation Discussion by 
Conditional simulation

Theoretically, each simulation value can be used for the 
resource estimation. The optimized simulation used for 
the acceptable resource estimation should follow some 
certain principles, as:

�The simulation values of mean, variation and 
coefficient of variation are to close with 
corresponding values of composites

�The simulation variance is twice the estimation 
variance 

�One simulation mean value is the median value of 
all the simulations 

In 10 sets of simulations, simulation 8 was the 
optimal choice with average grade was 8.76 and standard 
deviation of 6.64. As shown in Fig. 10, the simulation 8 
is located in middle position within most of intervals, 
which is better used for the resource estimation, avoiding 
the possible errors caused by the variability. Furthermore, 
during the mining actives, the conditional simulation can 
be also used for the mining schedule development and 
production.  

4 Conclusions 

Due to the highly smoothed effect by kriging, the mineral 
resource estimation by conditional simulation is in 
particular irreplaceable in the mining block panel. As for 
the estimation model, when the sample spacing is less 
than the actual block size, the interpolated block grade 
model by kriging may have large differences with the 
actual mining activities, caused by the high smoothing 
effect. Therefore, the general linear estimation cannot be 
used for the actual mining block estimation. 
The conditional simulation not only repeats the grade 
variability in the space, but also the optimized conditional 
simulation could be used for the resource estimation 
based on the research of grade, standard deviation and 
variation. The conditional simulation further can assist 
arranging the mining production schedule.
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