Ampoule Bottle Detection Equipment Research and Development

Xinyu Liu 1,a, Yu Cheng 2, Hongbin Cui 1, Chao Gui 1, Cunming hao 2, Pengxian Cao 1

1 Hebei University of science and technology, Shijiazhuang, China
2 Institute of applied mathematics, Hebei Academy of sciences, Shijiazhuang, China

Abstract. With the continuous development of computer vision technology, its application is more and more extensive. In recent years, the application of computer vision technology in the area of medical packing detection also made great achievements. This paper detailed a scientific and reasonable scheme of an ampoule bottle automatic detection equipment. In this scheme we use the computer vision technology and CNC technology, and select the appropriate transport mechanism and cameras to get images of ampoules. After getting the images, we use a software named MATLAB, which can deal with the images, to obtain some useful information about the ampoules. Then we can evaluate the quality of the ampoule according to these information.

1 Introduction

In recent years, with the development of computer vision technology, the method of ampoule detection has acquired a new huge development. The traditional methods mainly depend on manual detection with some professional optical instruments. These methods have many defects, such as slow detection speed, low accuracy, often mistaken and missed detection and so on, so that it has been difficult to meet the requirements of the ampoule bottle modern production. On the contrary, the emerging computer vision technology can meet all the demands of detection with its brilliant advantages, like fast detection speed, high precision, high degree of automation and so on[1]. Therefore, a new ampoule bottle detection equipment, which is based on computer vision technology, emerges as the times require.

2 Discussed Problems

The ampoule bottle is a kind of sealed vial whose capacity is generally 1-25ml, commonly used for depositing serum, vaccine and drug for injection[2]. Its detection indicator mainly includes the following aspects, size, sloping bottom, bottle crack, stains, foreign body and etc, the size includes bubble diameter, neck diameter, mouth diameter[3]. If the neck diameter and bubble diameter are not well controlled, it will lead to a phenomenon that the liquid levels between two ampoules are uneven through the dose of liquid is the same. The mouth diameter have an effect on liquid filling, if the size of it is smaller than normal, the filling needle tube will touch inner wall of the bottle when it fills liquid, thus there will be liquid adhesive on the inner wall; if the diameter size is bigger, the general strength flame cannot seal well. Sloping bottom will cause the bottle placed instable, the filling needle can not fill accurately. Bottle crack could cause liquid leak. In addition, if there are foreign bodies in bottles, they would have an bad influence on the quality of the liquid medicine, when inject them, that may cause serious consequences. The stain will directly affect the sales of the bottle.

3 The Overall Design of The System

3.1 Mechanical Structure

After observing practical production environment and considering the position of cameras, lights, processors and controllers, we put forward a feasible scheme of mechanical structure. The mechanical structure mainly includes delivery mechanism, image acquisition mechanism and defective bottles eliminating mechanism.

3.1.1 The Delivery Mechanism

The delivery mechanism is mainly used to deliver and position ampoules. A conveyor belt moves ampoules to the specified location, then a fixture clamps them and cameras take a picture.

3.1.2 The Image Acquisition Mechanism

The main part of the image acquisition mechanism is light and the camera. A good light solution not only ensure the brightness sufficient, but also could make the characters of detected object clear[4]. The camera is the key to get a good image, the ability to obtain sufficient

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article available at http://www.matec-conferences.org or http://dx.doi.org/10.1051/matecconf/20153103005
resolution image will directly affect the accuracy of the
detection system. There are many advantages of CCD
camera, like high resolution, good sensitivity, and high
performance in image denoising[5], so we choose the
CCD camera.

3.1.3 The Defective Bottles Eliminating Mechanism

Once the machine finds a defective bottle, it could move
the bottle out from production line immediately with the
defective bottles eliminating mechanism. The mechanism
depends on a strong airflow, whose pressure is 0.2 MPa
at least, to move the defective bottle out. And the
mechanism is also provided with an electromagnetic
valve to control the airflow. This mechanism has the
advantages of fast frequency, high efficiency, long
service life.

3.2 Control System

The control system consists of a control console and
cabinet. The console includes computer, screen,
keyboard and mouse, is the Human-machine interaction
part of the system. The staff can debug system and collect
detection data through it. The control cabinet mainly
includes PLC (Programmable Logic Controller), drive,
power supply and cabinet control button etc. It controls
all the mechanical devices. The communication between
the control console and cabinet is industrial Ethernet. The
structure of the control system is shown in Fig. 1.

![Figure 1. Structure of the control system.](image)

3.1.1 Computer

Computer, the key of Human-machine interaction, is
responsible for system debugging and commissioning,
image processing and outputting results.

3.2.2 PLC

PLC is used for storing, compiling and executing a
specific control program, with it the feasible solution and
instructions could turn into mechanical movements we
wanted.

3.2.3 Control Button

There are three buttons with different color in the front of
control cabinet, the green one, the yellow one and the red
one. The green can start the equipment; the yellow can
stop it under normal condition; the red stop it in an
emergency.

4 Image Processing and Analysis

We get some useful information of ampoules through a
software named MATLAB, then count and analysis of
the information of defective bottles, like size, sloping
bottom, bottle crack, stains, foreign body and etc. At last,
we’ll provide a quality testing report to the staff of
ampoules manufacture, so that they could adjust their
production line to improve the production capacity. This
process is divided into four parts, filter processing,
binaryization, edge detection and image recognition[6].

4.1 Filter Processing

Due to the impact of the surroundings, the images can't
directly provide some useful information we wanted.
Image noise is one of the most common influences, then
we should take some effective denoising methods. Given
the surroundings of ampoule detection, the median filter
is the best choice. It sequence the pixels in a selected
region and chooses the median to replace the value of the
center pixel [7]. The mathematical model can be written
as follow:

\[g_{\text{median}}(x,y) = \text{median}_{(x,y) \in N(x,y)}[f(s,t)] \] \hspace{1cm} (1)

The commonly used matrix template is

\[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{pmatrix}
\] \hspace{1cm} (2)

The effect picture of filter processing as follow:

![Figure 2. Effect picture of filter processing.](image)

4.2 Binaryzation

The binaryzation can separate object from its background
in a image, then we get a black-and-white image, which
named binary image. The effect of binaryzation is shown
in Figure 3:

![Figure 3. Effect picture of binaryzation.](image)

4.3 Edge detection
Edge detection is an essential step in image analysis and recognition. When detect the bubble diameter, we find there are two or more pixels in the edge, however we need a edge whose width is only one pixel. So we need to find the right edge, as the red lines shown in Figure 4:

![Image of edge detection](image)

Figure 4. Effect picture of edge detection.

4.4 Pattern Recognition

Pattern recognition refers to the steps of identifying and grouping objects of study according to its basic characteristics [8]. The characteristics of ampoules include bubble diameter, neck diameter, mouth diameter, sloping bottom, bottle crack, stains, foreign and body. We count ampoules with one or more characteristics presented above, then provide a quality testing report to the ampoules manufacture. The results of pattern recognition is shown in Figure 5:

![Image of pattern recognition results](image)

Figure 5. Results of pattern recognition interface.

5 Conclusions

With the technology of machine vision and CNC, the equipment acquires image through transport mechanism and cameras which controlled by PLC, then uses a software named MATLAB, which can get some useful information from the images, to evaluate the quality of the ampoules. The equipment can completely replace the manual detection, it would greatly improve the detection efficiency and bring enormous economic benefits.

6 Acknowledgements

I would like to express my gratitude to all those who helped me during the writing of this paper. I would like to express my heartfelt gratitude to Professor Hongbin Cui, all the other tutors and teachers, for their instructive advice and useful suggestions on my thesis. I am deeply grateful of their help in this paper.

References

1. B. Klaus, P. Horn Robot View. 6(2003)