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1 INTRODUCTION 

A number of observational data show both the vertical 
and horizontal of the ocean internal-wave which is 
especially not negligible in this study of near inertial 
internal waves (Ahran [1], Boebel and Zenk [2] and so 
on), the parameterization problem of the parameters 
and explain the dispersion relation of ocean internal 
wave, wave remote sensing information extraction and 
ocean model of the internal wave. Considering the 
horizontal component of non-traditional approxima-
tion, the recent research for propagation characteristics 
of linear internal waves in the ocean have aroused 
wide concern, and many authors such as Kundu and 
Thomson [3], Gill [4], Kasahara and Gary [5], Gerkema 
and Shrira [6], Garrett and Munk [7] and so on have 
studied the internal waves in different forms of ap-
proximate solution and numerical solution, but these 
studies did not give a simple and practical internal 
waves’ dispersion relation expressions without the 
effect of background flow field on the frequency dis-
persion relation under non-traditional approximation. 
Therefore, we provide a normal mode analysis of the 
linearized Boussinesq model with particular emphasis 
on internal waves’ dispersion relation with the ap-
proximate analytical solutions, and the dispersion 
relation was compared between the non-traditional 
and traditional approximation in a background flow 
field. The results show that the influence of complete 
Coriolis force on the ocean internal wave dispersion 

relation in a background currents field is not negligi-
ble. 

2 DISPERSION RELATION OF A BOUSSINESQ 
APPROXIMATION WITH ROTATION 

2.1 Basic Equations 

It is assumed that the fluid is irrotational and incom-
pressible for continuous density stratification of sea-
water, Boussinesq and the complete plane approxima-
tion (which is also known as a non-traditional ap-
proximation) in the linear internal waves of the gov-
erning equations (Gerkema and Shrira [6] and reference 
Phillips [7]) and the horizontal uniform steady currents 
field � �0),(),( 00 zVzU�U

Figure 1. Internal-wave motion diagram in a background 
current field 
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Here, the coordinates are selected as shown in Fig-
ure 1. , , ,  and  are respectively the 
corresponding fluid density, the perturbation pressure 
and the velocity components for (x,, y ,z ); repre-
sents the buoyancy; and are 
respectively corresponding to the vertical and hori-
zontal components of Coriolis force; is the earth's 
rotation speed; represents the latitude; t is the time; 

and  are only corresponding to the different 
depth of fluids; under the -plane approximation, 

and can be considered as constant and we de-
note  

as the 

derivative operator. 
Rigid lid approximation is used as the upper surface

and the bottom boundary condition of the fluid mo-
tion, 

, ,                            (6)
, .                  (7)

Equations (1)--(5) and boundary conditions (6)--(7) 
constitute the basic equations for the motion of the sea 
water in a horizontal uniform current field. 

2.2 Vertical structure equations  

At first, the derivative of Equation (1) is with respect 
to the variable z, then: 

U Vu u u u
U

t z z x x z z y

U U Vu w v
V w f

y z z z z zz

w p
f

z x z


 � �� � � �
	 	 	 	� � � � � � � � ��

 � � �
� � �
	 	 � 	� ���� � � � � �� � ��

� �
	 � �

� � �
f

w
f
�w

� �f

�

     (8) 

Then the derivative of Equation (3) is with respect 
to the variable x , so: 
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Subtract Equation (8) from Equation (9), we obtain:

        (10) 

Derive Equation (10) with respect to the variable x ,
then: 

      (11) 

And then the derivative operator is used in Equation 
(11), which can be: 
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(12) 

The derivation process is similar to (8)--(12), and 
we derive Equation (2) with respect to the variable z ,
then: 

       (13) 

Then the derivative of Equation (3) is with respect 
to the variable y , so: 

,    (14)  

Subtract Equation (13) from Equation (14), and 
then we obtain: 
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Then derivative of Equation (15) is with respect to 
the variable y , so: 
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And then the linear derivative operator is used in 

Equation (16), which can be: 
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Add Equation (12) and Equation (17), and put the 
result in order, then: 
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Derive Equation (1) with respect to the 
variable y , then: 

     (19) 

Then the derivative of Equation (2) is with respect 
to the variable x , so: 
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Subtract Equation (19) from Equation (20), and 
then we obtain:  
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Take the Continuity Equation (5) into Equation (21),
so: 
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Then derive Equation (5):  
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The derivative of Equation (22) is with respect to 
the variable y , then:  
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And the derivative of Equation (25) is with respect 
to the variable x , so: 
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Let Equation (27) add Equation (26), then we can 
get: 
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From Equation (22), we can get: 
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Then: 

       (31) 

Take Equations (22), (23), (28) and (31) into Equa-
tion (18), the vertical velocity equation of the fluid 
movement is as follows:  

. (32) 

The Equation (32) is the vertical velocity equation 
of the sea water in a horizontal uniform background 
current field under non-traditional approximation. If 
the average background flow does not exist, then the 
Equation (32) will be degenerated to the vertical ve-
locity equation of internal-wave. Equation (32) and 
boundary conditions (6) and (7) can determine the 
vertical velocity of fluid motion in a horizontal uni-
form steady current field, and other wave field ele-
ments can be expressed by the vertical velocity w as 
follows: 

,              (33) 

And:

      (34) 

w

dt

d
�

�
                        (35) 

2.3 Wave solution and dispersion relation 

We assume that the vertical velocity has the form: 

� � � � )(exp,,, tlykxizWtzyxw ��	� (36)

Where, k and l are the wavenumbers in x and y. By 
substituting (36) into (32) and eliminating the expo-
nential factor, we can obtain the following equations 
for W(z):

(37)

Equation (37) and boundary conditions (6)--(7) 
formed the vertical velocity equation of fluid motion 
in a horizontal uniform current field. 
Let:

                  (38) 

Where, γ is a real coefficient that will be determined 
later. By substituting (38) into (23) and (37), we can 
obtain the following equation: 

(39) 

Let the coefficient of  equals 0, then: 
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              (40) 

The Equation (39) is changed into the following 
form: 

(41) 

When not considering the effect of the background 
current field, (41) reduced to the equations is the 
Boussinesq version of the similar equations (7 on page 
82 of Liu Yongjun [11]. 

Our task now is to solve (41) under the boundary 
conditions (6) and (7) then 

2.4 Solutions of the system in the case of constant N 

Because the boundary conditions are w= 0 at z= 0 and 
1, the solution of (41) is chosen in the form. The gen-
eral solutions of the system of Equation (41) can be 
expressed by: 

                   (42) 

Where, κ is the vertical half-wavenumber and it is 
expressed by: 

(43) 

And j= 1, 2, 3, … respectively denotes the vertical 
wave mode index. Solution (42) as wave motion satis-
fies (41), and it provides that: 

(44) 

This is a quartic equation in ω. Therefore, there are 
four kinds of wave oscillations which propagate in 
four directions with the different phase speed. The 
properties of these wave modes are discussed by 
Kasahara (2003a, 2004), Durran and Bretherton (2004) 
for the cases of N = constant. Therefore, the readers 
will refer to those references. However, we should 
bring out some basics of the dispersion equation (44)
that are pertinent to understand the contrast of eigen-
functions between the four different kinds of normal 
modes. 
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3 CONCLUSIONS 

In this paper, the ocean internal waves dispersion rela-
tion under non-traditional approximation derived by
Liu Yongjun et al. (2009) is extended to the situation,
which the influence of complete Coriolis force and a
horizontal uniform background current field on ocean 
internal waves solution and dispersion relation is con-
sidered with the rigid lid approximate boundary con-
ditions of the surface and bottom permeability bound-
ary condition. And we assume that the buoyancy fre-
quency N is constant under the f-plane approximation, 
the internal wave solutions and the dispersion relation 
are obtained from the linear dynamic equations. Our 
study shows that there are four kinds of wave oscilla-
tions with different phase velocity which propagate in 
corresponding four directions; it is different from the 
conclusion of Kasahara and Gary (2006), who con-
firmed that there are two kinds of wave oscillations 
which propagate in both eastwards and westwards 
directions with the same phase speed. Only the effect 
of complete Coriolis force is considered, but the in-
fluence of background current field is not considered. 
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