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Abstract. Unexpected failures of industrial gearboxes may cause significant economic losses. It is therefore important to detect
early fault symptoms. This paper introduces signal processing methods based on approximate entropy (ApEn) and Lempel-
Ziv Complexity (LZC) for defect detection of gears. Both methods are statistical measurements exploring the regularity of a
vibratory signal. Applied to gear signals, the parameter selection of ApEn and LZC calculation are first numerically investigated,
and appropriate parameters are suggested. Finally, an experimental study is presented to investigate the effectiveness of these
indicators. The results demonstrate that ApEn and LZC provide alternative features for signal processing. A new methodology
is presented combining both Kurtosis and LZC for early detection of faults. The results show that this proposed method may be
used as an effective tool for early detection of gear faults.

1. Introduction

Gearboxes play an important role in industrial applica-
tions, and unexpected failures often result in significant
economic losses. Numerous papers considering gear
condition monitoring through vibration measurements
were published over the years. Compared to classical
techniques such as statistical time indicators or Fast
Fourier Transform, advanced signal processing techniques
like time-frequency analysis (STFT, Wigner-Ville) [1–4]
or wavelet transform [5,6] have shown to be more efficient
for gear defect detection. Baydar et al. [7–10] proposed
various methods such as the instantaneous power spec-
trum, Wigner–Ville distribution and the wavelet transform
method for local tooth fault detection from vibration and
acoustic signals. Yesilyurt [11] applied the spectrogram
and scalogram approach for gearbox fault detection.

The Lempel-Ziv complexity (LZC) and approximate
entropy (ApEn) methods present alternative tools for signal
analysis involving nonlinear dynamics. These methods are
becoming popular and have found wide applications in
various disciplines, especially in the field of biomedical
engineering. The ApEn method has recently received
more attention. Yan [12] investigated the application of
ApEnfor the health monitoring of rolling element bearings.
Y. He and X. Zhang [13] applied the ApEn method
for monitoring acoustic emission signals from defects
in rolling element Bearings. Fu et al. [14] used the
ApEn method to fault signal analysis in electric power
system. UsingApEn, Xu et al. [15] detected the looseness
of the bearing bushing in turbo generator. In all these
works, ApEn was used as a nonlinear feature parameter to
analyse the vibration signal for effectively identifying the
conditions of the mechanical system.
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On the other hand, Yan and Gao [16] investigated the
application of Lemp-Ziv complexity (LZC) for the health
monitoring of rolling element bearings. Wang et al. [17]
compare and analyse quantitative diagnosis methods
based on Lempel-Ziv complexity for bearing faults,
using continuous wavelet transform (CWT), Empirical
Mode Decomposition (EMD) method, and wavelet packet
method for decomposition of vibration signal. Kedadouche
et al. [18] combined LZCand EMD for early detection of
gears cracks.

As illustrated above, the LZC and ApEn methods are
becoming more and more attractive in the field of detection
and fault diagnosis. However, no work has been found to
apply ApEn or LZC measurement for gear faults diagnosis.
Therefore, in this paper, the ApEn and LZC methods are
compared in order to analyse vibration signals from gear
and investigate their efficiency for the defect detection and
severity evaluation of gears faults.

2. Theoretical background

2.1. Approximate entropy

Consider a time series S(i), i = 0 . . . N . Its “regularity”
may be measured by ApEn in a multiple dimensional space
so that series of vectors are constructed and expressed as
follows:

X (N − m + 1) = {x(N − m + 1),

x(N − m + 2), . . . , x(N )} . (1)

Each vector is composed of m consecutive and discrete
point data of the time series S. The distance between two
vectors X (i) and X ( j) can be defined as the maximum
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difference in their respective corresponding elements:

d(X (i), X ( j)) = maxk=1,2,..m(|x(i + k − 1)

−x( j + k − 1)|) (2)

where i = 1, 2 . . . , N − m + 1, j = 1, 2 . . . , N − m + 1,
N is the number of data points contained in the times
series.

For each vectors X (i), a measurement that describes
the similarity between the vectors X (i) and all other
vectors X ( j) can be defined as:

Cm
i (r ) =

1

N − (m − 1)

∑
j �=i

� {r − d(X (i), X ( j))} (3)

where

� {x} =
{

1, x ≥ 0
0, x < 0.

(4)

The symbol r represents a predetermined tolerance value,
where k is a positive constant (k > 0) and stdS is the
standard deviation of the time series S.

r = k × stdS. (5)

Finite time series consisting of N data points are used to
estimate the ApEn value of the time series, which is defined
as:

ApEn(m, r, N ) = ∅m(r ) − ∅m+1(r ) (6)

∅m(r ) =
1

N − m + 1

N−m+1∑
i=1

ln[Cm
i (r )]. (7)

2.2. Complexity analysis

The complexity analysis is based on the Lempel-Ziv
definition [19]. This approach transforms the analysed
signal into a data sequence. To illustrate the procedure,
consider a gear vibration signal with a known mean value.
A new sequence (S) is reconstructed by comparing the
value of each sample of the previous sequence within
the mean value. If the value of the sample is larger, it
is set to one (1), otherwise to zero (0). Therefore, only
two binary symbols are present in the new data sequence.
This S is subsequently scanned from its first sample to its
end. When a subsequence that is not encountered in the
previous scanning process is discovered, the complexity
value is increased by one (1). Thus, the Lempel-Ziv
complexity reflects the number of all different sub-
sequences contained in the original sequence. Figure 1
(reproduced from [16]) described the algorithm. For
generality sake, normalized complexity C(n) is often used
to obtain a measure independent of the sequence length.

C(n) = c(n)/b(n) (8)

b(n) = N/ log2(N ). (9)

Figure 1. The flow chart of LZC algorithm.

Table 1. Geared system data of the simulated signal.

Frequency Ampli-
(Hz) tude

Pinion: Number of teeth = 20 15 0.15
Gear: Number of teeth = 21 14.28 0.15
Gear mesh: The First Harmonic 300 1
Gear mesh: The Second Harmonic 600 0.6
Gear mesh: The Third Harmonic 900 0.3

2.3. Parameters Selection of ApEn and LZC for
gear Signals

From above described algorithm of ApEn method, it can
be seen that the calculated ApEn value depends on two
parameters, which are the embedded dimension m and the
tolerance r. However, no guideline exists for optimizing
theses values. In order to simulate the vibratory signals of
gearbox, a gear multiplicative model whose the meshing is
modulated in amplitude has been used. The gear model as
defined in [20] is used (Table 1):

x(t) =
+∞∑

m=−∞
Sr1(t − mτr1) +

+∞∑
m=−∞

Sr2(t − mτr2)

+

+∞∑
n=−∞

Se(t − nτe).

(
1 +

+∞∑
m=−∞

Sr1(t − mτr1)

)

(10)

where τe, τr1 and τr2 represent the meshing period and the
rotational periods. Se(t), Sr1(t) and Sr2(t) represents the
meshing signal and its modulation.

Figure 2 and Fig. 3 represent the simulated signal and
its spectrum, respectively.

For a given dimension m, the key step of the ApEn
algorithm is to calculate the distance between two vectors
and to count the number of distance less than r (where
r = k∗standard deviation of the time series), as discussed
in [12–16]. The selections of k and m are based on a
convergence analysis. The choice of m and k depends on
the nature of the time series treated. The best parameters
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Figure 2. The simulated signal.
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Figure 3. Spectrum of the simulated signal.
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Figure 4. The calculated ApEn values by different parameters.
(Kvalue and m).

to be chosen are those who present little fluctuation, and
thus a good reproducibility. From Fig. 4, it can be seen
that, when m = 1, ApEn exhibits the poorest convergence
property (a large fluctuation). With m increasing (more
than 2), the convergence property of ApEn becomes
better for k greater than 0.4. However, a larger m will
lead to much higher computational cost. In this study, a
convergence property of ApEn is assumed already good
enough with m = 2. Of course, the k value should also be
selected as a compromise to avoid losing much detailed
system information.
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Figure 5. The calculated ApEn values by different parameters.
(Length of the data and the sample frequency).
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Figure 6. The calculated LZC values by different parameters.
(Length of the data and the sample frequency).

From this investigation, m = 2 and Kvalue = 0.5
times the standard deviation are selected for the ApEn
calculation of the vibration signal.

The relationship between the ApEn, LZC value and
the data length is illustrated in Fig. 5 and Fig. 6, where
seven simulated signals are comparatively displayed, under
sampling rates of 4, 8, 12, 16, 20 and 24 kHz, respectively.

It is seen, in both cases (ApEn and LZC), that
when the data length is greater than 5000 points, the
variation of ApEn and LZC with respect to each frequency
sampling rate become insignificant. However, the sampling
frequency and the data length are linked. So we must take
consideration of the components defining the signal. To
respect the Shannon theorem, the sample frequency must
be more than 2 times the highest frequency presented in
the signal. In our case, the sample frequency must be
greater than 2 time the third meshing frequency (900 Hz).

The simulation where conducted with Fs greater than
4 kHz which is sufficient. For a better detection of the
modulation, we must chose a good resolution frequency
which is defined by �H = Fs/ length(signal). In the
simulated signal, the modulations are about ±15 Hz. So,
a frequency resolution of 1 Hz is enough. This means that
the minimum length of data to be analysed is equal to the
sample frequency (4000 Hz).
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Figure 7. Time Computation of both LZC and ApEnfor different
length of data.

Table 2. ApEn and LZC for different SNR of gear signals.

Cases ApEn LZC
simulated signal (no noise) 0.3529 0.1294
SNR = 80 dB 0.3547 0.1364
SNR = 60 dB 0.3648 0.1692
SNR = 40 dB 0.4495 0.3056
SNR = 0 dB 1.3163 0.8909

Figure 7 shows a comparison of computing time
between LZC and ApEn. It is clear that the LZC is better
than ApEn.

2.4. Influence of noise

It is well known that a white noise excites all the frequency
components compared with other kinds of signal. If a
signal is contaminated by a white noise, calculated ApEn
and LZC values will also be. Using the simulated signal,
the ApEn and LZC values corresponding to different SNRs
were calculated, as listed in Table 2.

It may be noticed that the ApEn and LZC values
increase as the SNR decreases, which corresponds to a
degradation of the data quality. As discussed in [12], the
working conditions of machine system deteriorate due to
the degradation of the defects. The number of frequency
components contained in the signal will increase and the
SNR decrease, resulting in a decrease in its regularity.
This allows a decrease of its ApEn and LZC values. The
simulation results listed in Table 2 confirms that the ApEn
and LZC values provide a quantitative measurement for
characterising a dynamic signal which can be represented
by the deterioration of a machine’s health condition. From
Table 2, it can also be seen that ApEn is very sensitive to
large noises; however, ApEn is nearly unaffected by the
noise which it stays low. Otherwise, we can see that the
LZC is more sensitive to noise than ApEn.

3. Experimental study
The recordings of vibration signals were carried out at
CETIM, France on a gear system with a train of gearing,
with a ratio of 20/21 functioning continuously until its
destruction. The sample frequency was set to 20 kHz.

Table 3. Geared system data.

Parameter Pinion Gear
Number of tooth 20 21
Speed (rpm) 1000 952.38
Drive torque (Nm) 200
Face widh (m) 0.015 0.03
Module (m) 0.01 0.01
Pressure angle 20o 20o

Addendum coefficient 1.0 1.0
Dedendum coefficient 1.4 1.4

Table 4. Daily mechanical appraisal.

Day Observation
1 No acquisition
2 No anomaly
3 No anomaly
4 // //
5 // //
6 // //
7 Chipping teeth 1/2
8 No evolution
9 Tooth 1/2: no evolution; Tooth 15/16: start chipping
10 Evolution of the chipping of the teeth 15/16
11 // //
12 // //
13 Chipping across the full width of the tooth

Table 3 gives the details of the gear test rig parameters.
The test duration was 13 days with a daily mechanical
appraisal; measurements were collected every 24 h except
at the first day. Table 4 gives a description of the state of
the gear at each 24 h. The acceleration signals for days 2,
5, 7, 9, 10 and 12 are shown in Fig. 8.

Figure 9 presents some pictures of the chipping
observed in day 11 and 12.

Pareya et al. [21] use the same signal for their
own research. Only the Kurtosis and Crest Factor were
considered. The Kurtosis values for the experimental
signal were calculated from day 2 to 13 and are shown in
Fig. 10 and Fig. 11 (on day 1 no signal was taken).

It can be seen that the Kurtosis increases greatly
after the day 11. This indicates that the signal becomes
impulsive. The Crest Factor observes a little increase after
the day 9 (2.98 to 3.60). This is due to the evolution of the
chipping of the teeth 15/16 observed in day 9.

The values of ApEn and LZC for all signal are
plotted in Fig. 12 and Fig. 13. The method ApEn doesn’t
present a significant increase except at the Day 12. So the
characteristic ApEn seems to have equivalent efficiency as
Kurtosis or Crest Factor.

On the other hand, LZC shows a significant increase
after the day 4, revealing a clear anomaly due to gear wear.
However, it is not clear why a decrease at days 10 and 11
is observed. We may suspect that the signal was noisier at
these measurements.

Figure 14 presents both the kurtosis and LZC of the
day 12. The Kurtosis is reported in the abscise X and
LZC on Y.
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Figure 8. Evolution of acceleration signal with wear.

Figure 9. Evolution of the chipping (from CETIM).
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Figure 10. Kurtosis Value during the test for all days [from 21].

This representation gives both information on the
impulsiveness of the signal and on effect of the number
of frequency components and noise into the signal. It can
be seen that this plot divides the twelve days into three
regions. The first region contains the three first days.

The second enclose all days from 6 to 11. The second
region is separated from the first by the day 5. The day 5
present the change in the characteristics of the gear signal.
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Figure 11. Crest Factor Value during the test for all days
[from 21].
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Figure 12. Crest Factor Value during the test for all days.

Figure 15 compares the spectrum evolution between
days 4 and 5. An increase of the amplitude at day 5 may be
clearly noticed as compared with the day 4. Effectively,
this day presents the beginning of the degradation due
to wear. The last region is marked by an increase of the
Kurtosis and the stays in the same level as the second
region. At this stage, the signal becomes impulsive and the
gear is damaged.

According to Table 4, the chipping has only visually
been observed after the day 6. According to LZC
measurements, the beginning of the chipping was in fact
initiated at the day 5. This initiation is characterised
by the growth of the frequency components related to
the meshing. Consequently, this representation combining
Kurtosis and LZC may be used as an efficient tool for early
detection of faults.

4. Conclusion
This paper introduces ApEn and LZC metrics to analyse
the vibration signals recorded from defected gears. With
respect to gear signals, the parameter selection of ApEn
was investigated and the results show that m = 2 and
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Figure 13. LZC Values during the test for all days.
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Figure 15. Spectrum of the experimental signal.

Kvalue = 0.5 times the standard deviation were suitable
and a good compromise for the ApEn calculation in
the investigated application. In addition, the influence
of white noise on the ApEn and LZC calculation was
also investigated. The results show that ApEn is nearly
unaffected by the noise when staying at a small level.
However, ApEn is very sensitive to the noise at high levels.
The LZC is more sensitive to noise as compared with
ApEn. An experimental study was conducted to evaluate
the effectiveness of these parameters. The results show
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that the LZC and ApEn can detect the defect of the gears
earlier than the classical temporal indicators. However
These preliminary studies suggest that the LZC appeared
more efficient than ApEn. The representation in a plan
(Kurtosis, LZC) is proposed as a new tool for effectively
monitoring gear defects. Although experimental results
look promising, the proposed vibration methodology has
yet to be tested on other test rigs. The research is thus being
continued to analyze vibration signals from different defect
types and on different types of gears, to systematically
validate the efficiency of this technique.
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Québécois de la Recherche sur la Nature et les Technologies),
MITACS Canada, Pratt & Whitney Canada and CETIM which
provided the experimental results are gratefully acknowledged.

References

[1] Wang WJ and McFadden PD. Early detection of gear
failure by vibration analysis –I. Calculation of the
time-frequency distribution. MSSP, 7(3): 193–203
(1993)

[2] Wang WJ and McFadden PD. Early detection of gear
failure by vibration analysis –II. Interpretation of the
time–frequency distribution using image processing
techniques. MSSP; 7(3): 205–15 (1993)

[3] Safizadeh M.S., Lakis A.A. and Thomas M., Gear
Fault Diagnosis using time-frequency methods,
proceedings of 20th seminar on machinery vibration,
Canadian Machinery Vibration Association, Quebec,
7.19-7.29 (2002)

[4] Safizadeh M.S., Lakis A.A. and Thomas M.,
Using Short-Time Fourier Transform in Machinery
diagnosis, Proceedings of WSEAS (Brazil) 494–200,
(2005)

[5] Z.K. Peng, F.L. Chu, Application of the wavelet
transform in machine condition monitoring and fault
diagnostics: a review with bibliography, Mechanical
Systems and Signal Processing 18, 199–221 (2004)

[6] R. Yan, R. X. Gao and X. Chen, Wavelets for
fault diagnosis of rotary machines: A review with
applications, Signal Processing 961–15 (2014)

[7] Baydar N and Ball A. Detection of gear deterioration
under varying load conditions by using the instan-
taneous power spectrum. Mechanical Systems and
Signal Processing; 14(6): 907–21 (2000)

[8] Baydar N, Chen Q, Ball A, Kruger U. Detec-
tion of incipient tooth defect in helical gears
using multivariate statistics. MSSP 15(2): 303–21
(2001)

[9] Baydar N., Ball A. A comparative study of
acoustic and vibration signals in detection of gear

failures using Wigner–Ville distribution. Mechanical
Systems and Signal Processing 15(6): 1091–1107
(2001)

[10] Baydar N. and Ball A. Detection of gear failures
via vibration and acoustic signal using wavelet trans-
form. Mechanical Systems and Signal Processing,
17(4): 787–804 (2003)

[11] Yesilyurt I., The application of the conditional
moments analysis to gearbox fault detection—
a comparative study using the spectrogram and
scalogram, NDT&E International 37, 309–320
(2004)

[12] Yan, R., and Gao, R. X., “Approximate Entropy as
a Diagnostic Tool for Machine Health Monitoring,”
Mechanical Systems and Signal Processing 21,
824–839 (2007)

[13] He Y. and X. Zhang. Approximate Entropy Analysis
of the Acoustic Emission From Defects in Rolling El-
ement Bearings, Journal of Vibration and Acoustics,
134 / 061012-1 (2012)

[14] Fu, L., He, Z. Y., Mai, R. K., and Qian, Q. Q.,
Application of Approximate Entropy to Fault Signal
Analysis in Electric Power System, Proceedings of
the Chinese Society of Electric Engineering, 28(28),
68–73 (2008)

[15] Xu, Y. G., Li, L. J., and He, Z. J. Approximate
Entropy and its Applications in Mechanical Fault
Diagnosis, Chin. J. Inf. Control, 31(6), 547–551
(2002)

[16] R. Yan and R. X. Gao, Complexity as a Measure
for Machine Health Evaluation, IEEE transactions on
instrumentation and measurement, 53(4), 1327–1334
(2004)

[17] Wang J., L. Cui, H. Wang and P. Chen , Improved
Complexity Based on Time-Frequency Analysis
in Bearing Quantitative Diagnosis, Advances in
Mechanical Engineering, Article ID 258506, 11
pages http://dx.doi.org/10.1155/2013/258506 (2013)

[18] Kedadouche M., Kidar T., Thomas M. and Tahan
A. , Combining EMD and Lempel-Ziv Complexity
for early detection of gear cracks, Surveillance 7,
Chartres, France, pp 100–110, 28-29 (2013)

[19] Lempel A. and Ziv J., On the complexity of finite
sequences, IEEE Trans. Inform. Theory,Jan. IT22,
75–81 (1976)

[20] El Badaoui, M.: Contribution of vibratory diagnostic
of gearbox by Cepstral analysis, Ph.D. thesis, Jean
Monnet University of St Etienne (FR), p. 141 (1999)
(in French)

[21] Pareya A., El Badaoui M., Guillet F., Tandon N..
Dynamic modelling of spur gear pair and application
of empirical mode decomposition-based statistical
analysis for early detection of localized tooth defect,
Journal of Sound and Vibration 294, 547–561 (2006)

07001-p.7


	1 Introduction
	2 Theoretical background
	3 Experimental study
	4 Conclusion
	References

