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Abstract. This paper presents comparison between optimal homotopy asymptotic method and homotopy per-

turbation method for the solution of two-dimensional steady flow of an incompressible Maxwell fluid over a

transpiration channel within a porous medium due to a impulsively moving wall. The results obtained using

HPM for injection case fails to be in accordance with the available analytical data.

1 Introduction

Maxwell fluid is a subclass of non-Newtonian fluid of rate
type with property to describe the relaxation time effects.
Due to its ability in effectively taking various non-Newtonian
effects, it has been the topic of several research Qi and
Xu [2007], Hayat and Sajid [2007], Hayat et al. [2008],
Jamil et al. [2011], Salah et al. [2011] and Hayat et al.
[2011]. The governing equations are very complicated and
highly nonlinear as compared to those for Newtonian flu-
ids. There are few analytical solutions of the equations in-
volving Newtonian fluids and such solutions become even
rarer when equations for non-Newtonian fluids are consid-
ered. The aim of the present work is to solve the problem
of the steady boundary layer flow of an upper-convected
Maxwell fluid in a porous channel with wall transpiration.
We have solved the governing nonlinear equation of present
problem using the homotopy perturbation method, HPM,
He [2005] and optimal homotopy asymptotic method, OHAM,
Marinca and Herişanu [2008]. We noticed that the solution
obtain from the two methods are in a very good agreement
for suction case. It is noted from the solution series of ho-
motopy perturbation method that the results in the case of
injection fails to be in accordance with available analytical
data.

2 Statement of the problem

Consider the steady MHD two-dimensional flow of an upper-
convected Maxwell fluid in a channel with permeable walls.
The distance between the channel width, is 2l apart. Porous
medium fills the space between the walls of the channel.
The fluid motion is generated by suction/injection of the
channel walls. The complete set of governing equations of
the upper-convected Maxwell fluid consists of the incom-
pressibility conditions

∂u
∂x
+
∂v

∂y
= 0, (1)
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∂u
∂y

)
− φν

k
u, (2)

where u and v are the velocity components in the x and
y−axis, respectively, ρ is the fluid density, λ is the relax-
ation time, k is the permeability of the porous medium, φ
is the porosity, ν is the kinematic viscosity, σ is the electri-
cal conductivity and B0 is the constant magnetic field in y
direction.

The appropriate boundary conditions are:

u = 0, v =
V0

2
, at y = ± l

2
,

∂u
∂y
= 0, v = 0, at y = 0, (3)

where V0 is the transpiration velocity.
Hayat et al. [2011] has demonstrated that by using the

similarity variables:

τ =
x
l
, η =

y

l
, u = −V0τ

d f (η)

dη
, v = V0 f (η) ,

M =
σB2

0l
ρV0

, K =
l2φ
k
, Re =

lV0

v
, De =

λV2
0

v
. (4)

The momentum equation (2) now can be reduced to the
following similarity equation:

d3 f
dη3

− M
(
Re

d f
dη
+ De f

d2 f
dη

)
− K

d f
dη
+ Re

⎡⎢⎢⎢⎢⎢⎣
(

d f
dη

)2

− f
d2 f
dη2

]
+ De

(
2 f

d f
dη

d2 f
dη2

− f 2 d3 f
dη3

)
= 0 . (5)

The corresponding boundary conditions (3) reduce to

f =
1

2
,

d f
dη
= 0, at y = ±1

2
,

f = 0,
d2 f
dη2
= 0, at y = 0, (6)
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where M is the Hartman number, K is the permeability of
the porous medium, Re is the Reynolds number and De
is the Deborah number. Must be noted that for Re > 0
corresponds to suction case, Re < 0 for injection and De =
0 for Newtonian fluid.

3 Solution using the OHAM

According to OHAM by Marinca and Herişanu [2008] the
differential equation (5) satisfied by the velocity f (η) is
decomposed into a linear part L ( f ) and a non-linear part
N( f ) and is written in the form:

L ( f ) + g (η) + N ( f ) = 0, B
(

f ,
d f
dη
,

d2 f
dη2

)
, (7)

where

L ( f ) =
d3 f
dη3

, (8)

N ( f ) = −M
(
Re

d f
dη
+ De f

d2 f
dη

)
− K

d f
dη

+ Re

⎡⎢⎢⎢⎢⎢⎣
(

d f
dη

)2

− f
d2 f
dη2

⎤⎥⎥⎥⎥⎥⎦ + De
(
2 f

d f
dη

d2 f
dη2

− f 2 d3 f
dη3

)
. (9)

We now construct a homotopy ψ (η, p) : R × [0, 1] → R
which satisfies the family of equations:

(1 − p)
[
L (ψ (η, p)) + g (η)

]
= H (p)

[
L (ψ (η, p)) + g (η) + N (ψ (η, p))

]
,

B
(
ψ (η, p) ,

dψ (η, p)

∂η
,

d2ψ (η, p)

∂η2

)
= 0, (10)

(1 − p)
d3 f (η, p)

dη3
= H (p)

{
d3 f (η, p)

dη3
− M

(
Re

d f
dη

+De f
d2 f
dη

)
− K

d f
dη
+ Re

⎡⎢⎢⎢⎢⎢⎣
(

d f
dη

)2

− f
d2 f
dη2

⎤⎥⎥⎥⎥⎥⎦
+De

(
2 f

d f
dη

d2 f
dη2

− f 2 d3 f
dη3

)}
,

B
(

f (η, p) ,
d f (η, p)

∂η
,

d2 f (η, p)

∂η2

)
= 0, (11)

where p ∈ [0, 1] is an embedding parameter. Expand ψ (η, p)
in a Taylor series with respect to p, we obtain

ψ (η, p,Ci) = f0 (η) +

∞∑
k=1

fk (η,Ci) pk, and i = 1, 2, ..., n,

(12)
where f0 (η) is the initial approximation. Using the bound-
ary conditions (6) , we choose the initial approximation
f0 (η) as

f0 (η) =
1

2

(
3y − 4y3

)
. (13)

Substituting equation (12) into equation (11) and equating
the coefficients of like powers of p, we obtain the follow-
ing sets of problems for the first-order and second order

problem respectively, as follows:

d3 f1
dη3

− d3 f0
dη3
= C1

{
d3 f0
dη3

− M
(
Re

d f0
dη
+ De f0

d2 f0
dη2

)

−K
d f0
dη
+ Re

⎡⎢⎢⎢⎢⎢⎣
(

d f0
dη

)2

− f0
d2 f0
dη2

⎤⎥⎥⎥⎥⎥⎦
+De

(
2 f0

d f0
dη

d2 f0
dη2

− f 2
0

d3 f0
dη3

)}
,

f1

(
1

2

)
=

d f1
(

1
2

)
dη

= f1 (0) =
d2 f1 (0)

dη2
= 0, and (14)

d3 f2
dη3

− d3 f1
dη3
= C1

{
d3 f1
dη3

− M
[
Re

d f1
dη

+De
(

f0
d2 f1
dη2
+ f1

d2 f0
dη2

)]
− K

d f1
dη

+Re
[
2

d f0
dη

d f1
dη

−
(

f0
d2 f1
dη2
+ f1

d2 f0
dη2

)]

+De
[
2

(
f0

d f1
dη

d2 f1
dη2
+ f1

d f0
dη

d2 f1
dη2
+ f1

d f1
dη

d2 f0
dη2

)

−
(
2 f0

d f0
dη

d f1
dη
+ f 2

0

d3 f1
dη3

)]}

+C2

{
d3 f0
dη3

− M
(
Re

d f0
dη
+ De f0

d2 f0
dη2

)
− K

d f0
dη

+Re

⎡⎢⎢⎢⎢⎢⎣
(

d f0
dη

)2

− f0
d2 f0
dη2

⎤⎥⎥⎥⎥⎥⎦ + De
(
2 f0

d f0
dη

d2 f0
dη2

− f 2
0

d3 f0
dη3

)⎫⎪⎪⎬⎪⎪⎭ ,
f2

(
1

2

)
=

d f2
(

1
2

)
dη

= f2 (0) =
d2 f2 (0)

dη2
= 0. (15)

The second order approximate solution f̃ :

f̃ (η,C1,C2) = f0 + f1 + f2. (16)

Hence, the approximate analytical solution (16) yields the
following residual R and the functional J, respectively

R (η) =
d3 f̃
dη3

− M
⎛⎜⎜⎜⎜⎝Re

d f̃
dη
+ De f

d2 f̃
dη

⎞⎟⎟⎟⎟⎠ − K
d f̃
dη

+Re

⎡⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝d f̃

dη

⎞⎟⎟⎟⎟⎠2

− f̃
d2 f̃
dη2

⎤⎥⎥⎥⎥⎥⎥⎦ + De
⎛⎜⎜⎜⎜⎝2 f̃

d f̃
dη

d2 f̃
dη2

− f̃ 2 d3 f̃
dη3

⎞⎟⎟⎟⎟⎠ ,(17)

J (C1,C2) =

∫ 0.5

0

R2 (η,C1,C2) dη. (18)

For calculation of constants C1 and C2 the method of least
squares is employed.

The case of Newtonian fluid (De = 0), by fixing K =
0.5 and M = 1, we obtained the approximate solutions
of the second order for suction, Re = 20 and injection,
Re = −20 cases respectively as follows:

f (η) = 1.56123η − 2.62355η3 + 0.654338η4 + 0.382815η6

−0.0203779η7 + 0.165849η8 − 0.0174164η9

−0.00351136η11 + 0.00066536η13, (19)
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f (η) = 1.43713η − 1.35306η3 − 0.69448η4 − 0.336842η6

−0.0220769η7 − 0.14185η8 − 0.0175108η9

−0.00349076η11 + 0.00066536η13. (20)

While for the case of non-Newtonian fluid (De = 0.5),
by fixing K = 0.5 and M = 1, we obtained the approx-
imate solutions of the second order for suction, Re = 20
and injection, Re = −20 cases respectively as follows:

f (η) = 1.58804η − 3.01244η3 + 1.30439η4

−0.037345η5 + 0.062715η6 + 0.000884155η7

+0.327464η8 − 0.043228η9 − 0.0033277η10

+0.0079121η11 − 0.00185403η12 − 0.0121708η13

+0.000393708η14 + 0.000373307η15 − 0.000514279η16

+0.0000150178η18 − 0.0000430097η20, (21)

f (η) = 1.41147η − 0.993641η3 − 1.25752η4

−0.0393603η5 − 0.0365252η6 + 0.0017511η7

−0.275855η8 − 0.0403496η9 + 0.00645865η10

+0.00403368η11 + 0.000642343η12 − 0.0116429η13

−0.000189756η14 − 0.000390271η15 + 0.000376716η16

−0.0000209551η18 + 0.0000430097η20. (22)

4 Solution using the HPM

According to the homotopy perturbation method by He
[2005], the differential equation (5) satisfied by the veloc-
ity field f (η) is decomposed into a linear part L( f ) and a
non-linear part N( f ) similar to (7)-(9). We construct a ho-
motopy class h (η, p) : R × [0, 1] → R which satisfies the
following equation:

L (h) − L ( f0) + p
[
L ( f0) + N (h) + g (η)

]
= 0, (23)

where f0 is an initial approximation to the solution f (η) .
Assuming:

f0 (η) =
3η

2
− 2η3. (24)

Taking p as small parameter and taking a power series so-
lution of equation (26) in the form:

h (η, p) =

∞∑
k=0

pkhk (η) , (25)

where hk are unknown function of η. Now setting p → 1,
equation (28) yield the approximate analytical solution of
f (η)

f (η) = lim
p→1

h (η, p) =

∞∑
k=0

hk (η) . (26)

Substituting equation (28) into equation (26) and the bound-
ary conditions (6) and equate the coefficients of like pow-
ers of p we obtain the following sets of problems for the
first-order and second order problem respectively, as fol-
lows:

d3h1

dη3
+

d3 f0
dη3

− M
(
Re

dh0

dη
+ Deh0

d2h0

dη2

)
− K

dh0

dη

+Re

⎡⎢⎢⎢⎢⎢⎣
(

dh0

dη

)2

− h0

d2h0

dη2

⎤⎥⎥⎥⎥⎥⎦
+De

(
2h0

dh0

dη
d2h0

dη2
− h2

0

d3h0

dη3

)
= 0 ,

h1

(
1

2

)
=

dh1

(
1
2

)
dη

= h1 (0) =
d2h1 (0)

dη2
= 0 , and (27)

d3h2

dη3
− M

[
Re

dh1

dη
+ De

(
h0

d2h1

dη2
+ h1

d2h0

dη2

)]
− K

dh1

dη

+Re
[
2

dh0

dη
dh1

dη
−

(
h0

d2h1

dη2
+ h1

d2h0

dη2

)]

+De
[
2

(
h0

dh1

dη
d2h1

dη2
+ h1

dh0

dη
d2h1

dη2
+ h1

dh1

dη
d2h0

dη2

)

−
(
2h0

dh0

dη
dh1

dη
+ h2

0

d3h1

dη3

)]
= 0,

h2

(
1

2

)
=

dh2

(
1
2

)
dη

= h2 (0) =
d2h2 (0)

dη2
= 0. (28)

In view of equation (29) , the second order approximate
solution is given in the form

f (η) = h0 (η) + h1 (η) + h2 (η) . (29)

The case of Newtonian fluid (De = 0), by fixing K =
0.5 and M = 1, we obtained the approximate solutions
of the second order for suction, Re = 20 and injection,
Re = −20 cases respectively as follows:

f (η) = 1.44998η − 1.50564η3 − 0.501723η4 − 0.244683η6

−0.142783η7 − 0.061756η8 − 0.122032η9

−0.0246032η11 + 0.004662η13, (30)

f (η) = 1.56525η − 2.68744η3 + 0.75588η4 + 0.424023η6

−0.154688η7 + 0.229911η8 − 0.122693η9

−0.0244589η11 + 0.004662η13. (31)

The case of Newtonian fluid (De = 0.5), by fixing K =
0.5 and M = 1, we obtained the approximate solutions
of the second order for suction, Re = 20 and injection,
Re = −20 cases respectively as follows:

f (η) = 1.42938η − 1.25824η3 − 0.765788η4

−0.261667η5 − 0.308506η6 + 0.000695406η7

−0.109331η8 − 0.239972η9 + 0.00497605η10

+0.00015907η11 + 0.017362η12 − 0.0790405η13

−0.00417921η14 − 0.00692374η15 + 0.00741998η16

−0.000278536η18 + 0.000797702η20, (32)

f (η) = 1.59395η − 3.14132η3 + 1.62956η4

−0.275788η5 + 0.0711154η6 + 0.0182914η7 + 0.47375η8

−0.352074η9 + 0.0183066η10

+0.0900576η11 − 0.0302276η12 − 0.0888314η13

+0.00682448η14 + 0.00723836η15 − 0.00910533η16

+0.000388655η18 − 0.000797702η20. (33)
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(a)

(b)

Fig. 1. Effects of Hartman number M on f in the case of suction

Re > 0 (a) and injection Re < 0 (b) using HPM

5 Analysis of result

The results for Newtonian fluid (De = 0) are demonstrated
in Fig. 1 and 2. Fig. 1 illustrate the influence of Hartman
number M, on the non-dimensional velocity using HPM
for suction case (Fig. 1 (a)) and injection (Fig. 1 (b)). It
is observed that for suction and injection f shows reverse
opposite behavior when M varies. This behavior is within
contrast using the available analytical data (Hayat et al.
[2011] Fig. 4 and Fig. 5). The influence of Hartman num-
ber M, on the non-dimensional velocity using OHAM for
suction case (Fig. 2 (a)) and injection (Fig. 2 (b)). is shown
in Fig. 2. It is observed that for suction and injection f
shows good agreement using the available analytical data
(Hayat et al. [2011]. As M increases the velocity decreases
in the boundary layer region for injection case (Fig. 2 (b)).
This is physically true because the application of magnetic
field to an electrically conducting fluid gives rise to resis-
tive force which is known as Lorentz force. When suc-
tion is present in (Fig. 2 (a)), we should expect the re-
verse effect since the momentum transmitted to the fluid
by the wall is sucked away. While, the results for non-
Newtonian fluid (De � 0) are demonstrated in Fig. 3 and 4.
Fig. 3 illustrate the variation of Hartman number H on the
non-dimensional velocity f using HPM with suction case
(Fig. 3 (a)) and injection (Fig. 3 (b)). The result show sim-
ilar behaviour as that for Newtonian fluid (Fig. 1) and also
the results are contrast with the available analytical data
(Hayat et al. [2011] Fig. 16 and Fig. 22). Fig. 4 shows the
variation of Hartman number H on the non-dimensional
velocity f using OHAM with suction case (Fig. 4 (a)) and
injection (Fig. 4 (b)). The result show similar behaviour as
that for Newtonian fluid (Fig. 2) and also the results are in
good agrement with the available analytical data (Hayat et
al. [2011]).

6 Conclusion remark

Approximate analytical solutions for velocity upper-convected
Maxwell fluid in a porous channel with wall transpiration

(a)

(b)

Fig. 2. Effects of Hartman number M on f in the case of suction

Re > 0 (a) and injection Re < 0 (b) using OHAM

(a)

(b)

Fig. 3. Effects of Hartman number M on f in the case of suction

Re > 0 (a) and injection Re < 0 (b) using HPM

have been discovered. The governing nonlinear differential
equations are solved using both the Homotopy perturbation
(HPM) method and Optimal homotopy asymptotic method
(OHAM) and the results are validated by comparing the
present paper with the results of the related published arti-
cles. The process using OHAM is found explicit, effective
and it has a definite edge on homotopy perturbation method
for the reason that the approximate solution acquired could
be modified good convergence and low error. The results
obtained using HPM for injection case fails to be in accor-
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(a)

(b)

Fig. 4. Effects of Hartman number M on f in the case of suction

Re > 0 (a) and injection Re < 0 (b) using OHAM

dance with the available analytical data.
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