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Abstract. High conversion ratio switching converters are used whenever there is a need to step-up dc source

voltage level to a much higher output dc voltage level such as in photovoltaic systems, telecommunications and

in some medical applications. A simple solution for achieving this high conversion ratio is by cascading different

stages of dc-dc boost converters. The individual converters in such a cascaded system are usually designed sepa-

rately applying classical design criteria. However these criteria may not be applicable for the complete cascaded

system . This paper first presents a glimpse on the bifurcation behavior that a cascade connection of two boost

converters can exhibit. It is shown that the desired periodic orbit can undergo period doubling leading to subhar-

monic oscillations and chaotic regimes. Then, in order to simplify the analysis the second stage is considered as

constant current sink and design-oriented analysis is carried out to obtain stability boundaries in the parameter

space by taking into account slope interactions between the state variables in the two-different stages.

1 Introduction

Power electronics systems are present in any application
where there is a need to convert a form of electrical en-
ergy into another. Examples include power supplies in con-
sumer electronics, industrial electric motor drives, electro-
heating, lighting and energy-efficient interfaces between
renewable energy resources and the distribution grid. These
systems make use of semiconductor switching components
operating at a high switching frequency to reach the de-
sired system response at a much slower time-scale than the
switching time-scale. The switch-mode operation is forced
by suitable pulse width modulation (PWM) schemes ap-
plied to the main switches of the system and in practice,
the desired behavior is a periodic orbit with the same pe-
riod of the sampling PWM period T which is in turn equal
to that of an external clock signal.

One of the most used topology is the boost converter
which play a major role in many industrial applications and
it is necessary whenever it is required to step-up a source
voltage to a higher voltage level [1]. In many applications,
a high step-up conversion ratio is needed. This is the case
of, among others, uninterrupted power supplies (UPS), au-
tomobile high intensity discharge headlamps, and in some
medical equipments. This is also the case of renewable
energy applications such as distributed photovoltaic (PV)
generation systems, fuel cell energy conversion systems
and modern electrical vehicles. In these applications, al-
though a simple boost converter can be normally used,
there are many inconveniences with its use for high step-
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up ratio mainly related to increased stress in the compo-
nents and the system efficiency. First, the voltage stress
of the main switch is equal to the high output voltage,
hence, a high-voltage rating switch with high on resistance
should be used, generating high conduction losses. Sec-
ond, high conversion ratio implies working with very high,
some times prohibitive, values of duty cycles which would
results in large conduction losses on the power device and
this seriously decreases the system efficiency [1]. As a re-
sult, the conventional boost converter is substituted with
a high conversion ratio boost converters that could work
with relatively low values of duty cycle. Although there
are many different topologies that can carry out success-
fully this task, the system consisting of cascading two sim-
ple converters remain the most natural and efficient solu-
tion for this kind of applications. For instance, in the future
power grid, not only the utilities, but also the users can pro-
duce electric energy by aggregating distributed generation
sources. In that context, renewable energy sources such as
photovoltaic (PV) arrays will be used to feed a main (dc or
ac) bus. The problem is that the renewable energy sources
generate voltage levels much lower than the grid voltage.
Therefore cascaded schemes are necessary in this case.
Moreover, in these kind of applications, storage elements
such as batteries are connected to the dc bus through DC-
DC converters for ensuring an autonomous energy supply.
Figure 1 shows an example of a PV power system used
in combination with bi-directional DC-DC converter and a
back-up battery.

Modeling and simulation methods and stability analy-
sis are indispensable for the design of these converters. A
trade off always exists between simplicity and accuracy of
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Fig. 1. Photovoltaic power system connected to a dc grid through

a bidirectional dc-dc converter with a back-up battery.

the models. A model must be so simple to allow design-
oriented analysis of the dynamical behavior and the same
time not so simple that details of the system behavior are
lost.

The desired behavior of this switching systems is a pe-
riodic orbit with the same period as the PWM sampling
period. However, due to difference in time scales and non-
linearities, it is possible that the system behaves with a pe-
riodic orbit with a period equal to a multiple integer of the
sampling period [2]. The system can even enter through
different bifurcation scenarios into quasi-periodic or chaotic
regimes. During the last couple of decades, much effort has
been devoted to the study of nonlinear behavior in switch-
ing converters [2]. A large variety of complex nonlinear
instability phenomena, such as period doubling leading to
subharmonic oscillations, and Hopf or Neimark-Sacker bi-
furcations leading to slow-scale instabilities or saddle-node
bifurcation leading to jump phenomenon between differ-
ent steady-state solutions have been reported in switched-
mode DC-DC converters. These studies, which are mostly
based on accurate approaches coping with nonlinear be-
havior such as discrete-time mappings [3] or the Floquet
theory together with Filippov’s method [4]. These phenom-
ena can have harmful effects on the system operation and
may cause system failure, malfunctioning or even damages
caused by the increase of the stress on the switching com-
ponents which would rise the working temperature and this
in turn would shorten the lifetime of the system. Therefore
their study and prediction are important from both a theo-
retical and a practical points of view.

In this paper, the bifurcation behavior of two cascaded
boost converters connected to a dc bus with a conversion
ratio of about 6.5 is studied. The rest of this work is or-
ganized as follows: Section 2 deals with the description
of the system under study. In Section 3, some bifurcation
phenomena exhibited by the system are shown. Design-
oriented modeling of the system is addressed in Section
4. From a reduced-order model, stability boundaries in pa-
rameter space are obtained. Design-oriented stability con-
ditions are obtained in Section 5 where slopes interaction
are revealed. Finally, some concluding remarks are drawn
in the last section.
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Fig. 2. Bidirectional boost dc-dc converter.
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Fig. 3. The efficiency of the single stage boost converter as a func-
tion of the duty cycle D and the coefficient ρL.

2 High Conversion Ratio Problems and
Solutions

The boost converter is shown in Fig. 2. This is a well-
known switching power converter able to produce a dc out-
put voltage larger than its input dc voltage. It step-up the
input voltage vg to a desired output voltage vo > vg with
a suitable switching of the switch. Taking into account the
switching and the magnetic components losses, the con-
version ratio for a single boost converter will be given by
[1]

M(D) =
η(D)

1 − D
(1)

where D is the duty cycle and η is the efficiency given by

η(D) =
Pout

Pin

=
1

1 + �
(2)

where

� =
(rL + DrDS )Iout
(1 − D)2Vout

+
(rDS + DrC)Iout
(1 − D)Vout

(3)

rL is the inductance equivalent series resistance (ESR), rDS
is the MOSFET on resistance, rC is the ESR of the output
capacitor and Iout and Vout are the output current and input
current of the converter. For simplicity let us consider ideal
switches and only losses in the energy storage elements
will be taken into account. Let us also neglect the switch-
ing losses. Figure 3 shows the plot of the efficiency η as a
function of the duty cycle D and the ratio ρL = rLIout/Vout.
It can be noted that the efficiency is highly degraded for
high values of the duty cycle. This justifies the use of a
cascade connection of boost converters to avoid using high
values of duty cycles.
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Fig. 4. Schematic circuit diagram of a boost switching converter loaded by another boost switching converter. The first stage is under a

PCMC with its output voltage loop closed. The average input current in the second stage is tightly regulated by PI compensator

3 Current mode controlled cascaded
boost-boost converters

3.1 System description

The two-stage dc-dc converter considered in this study is
shown in Fig. 4. It consists of a cascade connection of two
boost converters. It is assumed that both converter stages
operate in Continuous Conduction Mode (CCM). In this
case, the inductor currents iL1 and iL2 never drop to zero.
The switches are considered ideal and the Equivalent Se-
ries Resistances (ESRs) of inductors and capacitors are in-
cluded in the model of the circuit. For the boost converter,
a current loop is always necessary due to its non-minimum
phase nature if the feedback variable is the output voltage
[1]. The system is controlled by comparing the inductor
currents of the first and the second stages iL1 and iL2 with
their reference values iref1 and iref2. The inductor current in
the first stage is controlled by a typical PCMC with an arti-
ficial T−periodic ramp compensator ia1(t) with slope ma1.
With the aim to regulate the intermediate voltage vC1 and
the inductor current iL2 in the second stage to their desired
values, the corresponding errors are processed by PI com-
pensators. The intermediate voltage loop provides current
reference for the first stage but it can also provide this ref-
erence to the second stage.

3.2 System Modeling

3.2.1 Power stage model

By applying Kirchoff’s current and voltage laws to the cir-
cuit depicted in Fig. 4, the cascade connection of the two
converters can be mathematically described by the follow-
ing set of differential equations

diL1

dt
=
vg

L1

− rL1iL1

L1

− vC1 + rC1(iL1 − iL2)

L1

(1 − δ1) (4)

diL2

dt
=
vC1 + rC1(iL1(1 − δ1) − iL2)

L2

− rL2iL2

L2

− Vdc

L2

(1 − δ2)(5)

dvC1

dt
=

iL1

C1

(1 − δ1) − iL2

C1

(6)

where for the first stage (resp. second stage) δ1 = 1 when
the switch S1 (resp. S2) is closed and δ1 = 0 when the
switch S1 (resp. S2) is open. All the parameters that appear
in (4)-(6) are shown in Fig. 4. vC1, iL1, vC2 and iL2 are the
state variables of the power stage that stand for the capac-
itor voltages and the inductor currents in the first and the

second stages respectively. The variables δ1 and δ2 are the
binary command signals used to drive the switches S1 and
S2 respectively, and vg is the input voltage of the first stage.
L1, L2, C1 and C2 are the inductances and the capacitances
of the first and the second stages, rL1, rL2, rC1 and rC2 being
their ESRs.

3.2.2 Controllers modeling

At the beginning of each switching cycle in the first stage,
the switch S1 is turned on. The controlled current iL1 in-
creases until it reaches the signal iref1 − ma1(t mod T ),
the switch S1 is then turned off, and remains off until the
next cycle begins. During this time, the switch S1 is con-
ducting. With the aim to regulate the output voltage to its
desired value, the inductor current reference in the first
stage is generated from an outer voltage loop PI controller
whose input is the output voltage error ev1 = Vref1 − vo1,
vo1 = vC1 + rC1dvC1/dt, whose output is iref1 given by

iref1 = Wv(ev1 + ωzvx3) (7)

where x3 =
∫

ev1(t)dt is the voltage error integral. With the
aim to regulate the the inductor current iL2 in the second
stage to its desired value, the error iref2 − iL2 is processed
by a PI current compensator whose output is given by

vcon2 = Wi(ei2 + ωzix5) (8)

where x5 =
∫

ei2(t)dt is the current error integral. During
this time, the switch S2 is switched on at the beginning
of each switching period and switched off whenever vcon2
crosses vr2. The state of the switch S2 is complementary to
that of switch S2. The control signal for the second stage
can be written in terms of this new additional variable as
vcon2 = Wi[ei2 + ωz

∫
ei2dt]. The integral action of the pre-

vious controllers involve new system state variables which
can be selected to be either the integral of the output of
these controllers or simply the integral of the errors x3 and
x5. In this case, the extra state equations for these two vari-
ables are

dx3
dt
= Vref1 − vo1 (9)

dx5
dt
= iref2 − iL2 (10)

The duty cycles are decided by comparing in the first stage
the inductor current iL1 to the signal iref1 −ma1t mod T and
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Fig. 5. Waveforms of the state variables and the control signals

in the two stages. While the second stage is stable, the first stage

exhibits subharmonic fast-scale instability. C1 = 500 μF

comparing in the second stage the control voltage vcon2
with the T−periodic ramp modulator vr2 = ma2t mod T .
Therefore, the switch S1 in the first stage is closed period-
ically each clock period and it is turned off whenever the
following switching function

σ1(x, t) := iref1 − ma1(t mod T ) (11)

is equal to zero, where iref1 = WvVref1 + F1x(t) is the refer-
ence current and, according to (11), the feedback vector in
the first stage is F1 = [−1, −WvrC1, −Wv, Wvωzv, 0] and
x = (iL1, iL2, vC1, x4, x5)� ∈ R

5 is the vector of state vari-
ables of the system. In the second stage the switching de-
cision is taken by comparing the control signal vcon2(t) :=
Wiiref2 + F2x(t) with a T−periodic ramp modulator vr2(t),
where the feedback vector in the second stage is F2 =
[0, −Wi, 0, 0, Wiωzi]. The switching instants are there-
fore solutions of the following equation

σ2(x, t) := Wiiref2 + F2x(t) − ma2(t mod T ) = 0 (12)

Note that F1 and F2 are also the normal vectors to the
switching manifolds defined by (11) and (12) respectively.
It is worth noting also that the system is linear for each
switch pair state, and the nonlinearities arise in this kind of
systems basically from interaction between feedback and
switching processes that make the dynamics of the system
highly nonlinear. For each state of the switch pair (S1, S2),
the system can be described by a set of linear differential
equations that can be written as follows ẋ = Ai jx + Bi j,

(i, j) ∈ {0, 1}2. Obtaining Ai j and Bi j from (4)-(6) and (9)-
(10) is straightforward.

4 Bifurcation behavior

The fixed circuit parameter values used in this study are
shown in Table 1 and they are selected as practical val-
ues for a connecting a PV panel whose output voltage is
vg = 50 V interfaced through a two-stage boost converter
with a dc grid whose voltage is Vdc=320 V [6]. The switch-
ing frequency is fs = 100 kHz. This parameter is selected
equal for both stages to avoid added complexities due to

possible switching frequency interaction. The intermediate
voltage vC1 is regulated to approximately 200 V in order to
make the first stage to work with a duty cycle D1 = 75%
therefore a ramp compensator is needed in this stage. The
duty cycle in the second stage is D2 = 0.375 and accord-
ing to a classical design criterion no ramp compensation is
needed. In the classical design, the minimum ramp needed
to avoid subharmonic oscillations in a boost converter is
given by the following expression [1]

vo
L
(D − 1

2
)︸������︷︷������︸

ma,cri(D)

< ma (13)

where ma is the slope of the T -periodic artificial ramp com-
pensator and D is the duty cycle, vo is the output voltage
and L is the inductance value. In our example, we have
for the first stage ma,cri,1(D1) = vC1(D1 − 1/2)/L1, where
D1 = 0.75, i.e, ma,cri,1 ≈ 119 kA/s, being the switching fre-
quency used fs = 100 kHz, the minimum ramp amplitude
must be 1.19. Therefore with a ramp amplitude equal to 1,
the system must be unstable. However, we will see that this
is not the case. Moreover, the minimum ramp compensator
will be determined. For the second stage, the duty cycle is
D2 = 0.375 < 0.5 and a priori, the system can be stable
even without a ramp compensator. This is the case a stand-
alone converter. In our interconnected scheme, a ramp volt-
age whose amplitude is VM2 = 1 V has been used in order
to avoid subharmonic oscillation at the second stage due to
possible interaction with the first stage.

Figure 5 shows the steady-state response of the system
for ma1 = 100 · 103 A/s and ma1 = 0.7 · 103 A/s. It can be
observed that while the controlled variables are well reg-
ulated their desired values and the second stage is stable
for both parameter values, the steady-state cycle-by-cycle
behavior of the first stage exhibits fast-scale subharmonic
oscillation for IM1 = 0.7 ·103 A. In order to investigate fur-
ther the bifurcation phenomena in the system, a bifurcation
diagram is computed by taking ma1 as a bifurcation param-
eter which is varied between 0 and 25 kA/s for three values
of the output capacitancesC1 =200 μF, 400 μF, 600 μF and
800 μF. The results are shown in Fig. 6. It can be observed
that the larger the capacitance C1 is, the larger the ramp
slope required for stabilization is.

5 Model reduction

The inductor current iL2 in the second stage is programmed
to track perfectly in average its reference current iref2 by
using a PI controller. Of course, this average current con-
troller may fail in carrying out this task and the second
stage may exhibit fast-scale subharmonic oscillation or slow-
scale low frequency oscillation. Both instabilities can be
avoided by selecting appropriately the ramp slope or am-
plitude according to a traditional design because the out-
put voltage is constant. Under these circumstances, the av-
erage value of the inductor current in the second stage is
tightly regulated in such a way that can be substituted by

its reference value without losing accuracy, i.e., iL2 ≈ iref2
[5]. Therefore, the cascaded system can be approximated
by the simplified scheme depicted in Fig. 7. The averaged
output current in the second stage will be iref2/M2(D2). The
first stage can therefore be seen as a boost converter loaded

06002-p.4

MATEC Web of Conferences 



Table 1. The used parameter values.

L1 rL1 rC1 Vref1 ωzv L2 rL2 Wi iref2 ωzi

420 μH, 100 mΩ 50 mΩ 200 V 10 krad/s 2 mH, 100 mΩ 1 Ω 1 A 10 krad/s
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(b) C1 = 600 μF
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(c) C1 = 800 μF

Fig. 6. Bifurcation diagram by taking ma1 as a bifurcation parameter for different values of C1. Dashed vertical line stands for the stability

boundary according to the traditional approach.
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Fig. 7. Schematic diagram of the simplified system.

by a constant current sink whose dynamic behavior and
its output voltage controller design has been recently ad-
dressed by state-space averaging technique [6]. However,
nonlinear analysis and the bifurcation phenomena have not
been reported to the author’s knowledge. It is worth to note
that this approximation is also valid if the second stage is
another converter topology rather than the boost converter
considered in this study. Note also that although a full-
order model can be used to obtain numerically the critical
value of the parameters, it is more useful to have a simpli-
fied reduced-order model to speed-up the simulation [5] or
even to derive from it explicit analytical expressions for the
stability boundaries as it will be done in the next section.
The simplified system can be mathematically described by
the following set of differential equations

diL1

dt
=
vg

L1

− rL1iL1

L1

− vC1 + rC1(iL1 − iref2)
L1

(1 − δ1)(14)
dvC1

dt
=

iL1

C1

(1 − δ1) − iref2
C1

(15)

dx3
dt
= Vref1 − vC1 − rC1iL1(1 − δ1) + rC1iref2 (16)

which can be written in matrix form as follows

ẋ = A1x + B1u for S1 on (17)

ẋ = A2x + B2u for S1 off (18)

where

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−rL1

L1

0 0

0 0 0
0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , B1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

L1

0 0

0 − 1

C1

0

0 rC1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(19)

A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−rL1

L1

− 1

L1

0

1

C1

0 0

−rC1 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

L1

0 0

0 − 1

C1

0

0 rC1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(20)

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
iL1
vC1

x3

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , u =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
vg

iref2
Vref1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (21)

6 Stability boundaries in the parameter
space

Let D1 = D for simplicity of notation. Let Φ1(DT ) =
exp(A1DT ),Φ2((1−D)T ) = exp(A2(1−D)T ). Let us also
define the matrix Φ = Φ2(DT )Φ1((1 − D)T ) and the vec-

tor Ψ = Φ2(t)
∫ D1T
0
Φ1(t)B1dt +

∫ T
D1T Φ2(t)B2dt. In [7] has

been shown that at the onset of subharmonic oscillation
boundary, the following condition is fulfilled

F1[ẋ(DT−) −Φ1(I +Φ)−1]Φ2Δẋ(DT ) = ma1 (22)

where Δẋ(DT ) = ẋ(DT+) − ẋ(DT−) = (A1 − A2)x(DT ) +
(B1 −B2)u whenever a solution x(DT ), corresponding to a
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periodic orbit x(t) at time instant DT , exists. For the boost
converter B1 = B2. Let A = A1 −A2. Therefore Δẋ(DT ) =
Ax(DT ) and (22) becomes

F1[A1x(DT )+B1u−Φ1(I+Φ)−1]Φ2Ax(DT ) = ma1 (23)

Although the previous equation is a closed-form ex-
pression for the stability boundary, its use for design-oriented
analysis is not easy. To overcome this problem, the follow-
ing section provide design-oriented expression suitable for
the choosing parameter values that guarantee stability in
the parameter space.

7 Design-oriented stability conditions and
slope interactions

In steady-state, the slope of the intermediate capacitor volt-
age is governed by the following equations

mC1 = − iref2
C1

< 0 (24)

mC2 =
iL1

C1

− iref2
C1

> 0 (25)

The slope of the output voltage of the first stage is given
by

mo1 ≈ − iref2
C1

− rC1

diref2
dt

(26)

mo2 =
iL1

C1

− iref2
C1

+ rC1m2 (27)

From (28), the inductor current reference iref1 in the first
stage is given by

iref1 = Wv(Vref1 − vo1 + ωzv

∫
(Vref1 − vo1)dt) (28)

whose slope during the conducting time is given by

mref1 = Wv(−mo1 + ωzv(Vref1 − vo1)) ≈ −Wvmo1 (29)

where in the last expression it has been considered that
vo1 ≈ Vref1 and that iref2 is constant. Therefore the new
expression for the minimum ramp needed to avoid subhar-
monic oscillations in a current mode controlled dual-stage
cascaded boost converter is given by the following expres-
sion

vo1(D)

L1

(D − 1

2
) − Wv

iref2
C1︸��������������������������︷︷��������������������������︸

ma,cri,new(D)

< ma (30)

Figure 8 shows the boundary between stable and unstable
regions in the parameter space (D,ma1) for different values
of Wv and C1 obtained from (23). The new critical value
is smaller than the traditionally used. Therefore a classi-
cal design procedure can predict subharmonic oscillation
while the system is still stable. The new design-oriented
expression (30) is more accurate.
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Fig. 8. Boundary between stable and unstable regions in the pa-

rameter space (C1,ma1).

8 Conclusions

High conversion ratio cascaded boost converters are ap-
plied in a broad range of applications. The advantage of
using cascaded converters is that a desired output volt-
age/current can be obtained with higher efficiency than in
single stage systems and that a specified variation in out-
put voltage can be realized faster and more precisely. The
penalty is the added complexity that follows from using
a large number of components and the interaction between
the different stages. In this paper an investigation of the dy-
namics of a cascade connection of current mode controlled
boost converters is performed. A reduced-order model has
been obtained allowing the obtaining closed-form expres-
sions for the stability boundaries.
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