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Abstract. The present paper proposes a new index for damage detection based on nonlinear features extracted

from prediction errors computed by multiple convolutions using the discrete-time Volterra series. A reference

Volterra model is identified with data in the healthy condition and used for monitoring the system operating with

linear or nonlinear behavior. When the system has some structural change, possibly associated with damage, the

index metrics computed could give an alert to separate the linear and nonlinear contributions, besides provide a

diagnostic about the structural state. To show the applicability of the method, an experimental test is performed

using nonlinear vibration signals measured in a clamped buckled beam subject to different levels of force applied

and with simulated damages through discontinuities inserted in the beam surface.

1 Introduction

Nonlinear behavior is commonly found in structures
due to several sources and many effects as jumps, gaps, dis-
continuities, harmonics, beyond others appear frequently
in the responses of structures caused by excitation condi-
tion, large displacement, new materials, etc [8,9,2]. Addi-
tionally, structural damages also induce nonlinear behav-
ior, for instance cracks, delamitation, buckling and post-
puckling, beyond other examples [10]. Thus, if the mon-
itored system operates initially with linear behavior, the
existence of damage is easily detected with some features
that can identify nonlinear behavior. However, a common
situation is when the system is initially nonlinear in the
undamaged state. In this scenario, most existing structural
health monitoring (SHM) methods are inadequate. Bornn
et al. [1] exemplified the inadequacy of SHM linear-based
methods to treat nonlinear systems. In that paper, the au-
thors proposed autoregressive support vector machine us-
ing times series for monitoring the initially nonlinear sys-
tem.

In the present work is shown a recent method based
on Volterra series proposed by the authors for SHM ap-
plication [4]. The procedure is able to detect the nonlin-
ear behavior and can be used for monitoring the structural
health of the system even if the level of nonlinearity in the
undamaged condition is high. The novelty of the present
paper is the application of this approach with experimental
data extracted from a test rig involving a buckled beam.

The paper starts with a quick description of the discrete-
time Volterra for SHM application. Next the identified non-
linear features are used to compute a damage-sensitive in-
dex. The application in a buckled beam with damages in-
duced by locally decreasing the stiffness through a cut in
the beam surface is presented. Finally, the concluding re-
marks are presented.
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2 Discrete-time Volterra series

The response y(k) of a nonlinear system can be well ap-
proximated by discrete-time Volterra series using multiple
convolutions [3]:

y(k) =
+∞∑
η=1

Hη(k) = y1(k) + y2(k) + y3(k) + · · · (1)

where y1(k), y2(k), y3(k), · · · are the linear, quadratic, cubic
and so on contributions of the output y(k) in k = 1, · · · ,K
(K is the number of time samples) andHη(k) is the Volterra
functional given by multidimensional convolutions:

Hη(k) =
N1∑

n1=0

. . .

Nη∑
nη=0

Hη(n1, . . . , nη)
η∏

i=1

u(k − ni)

where u(k) is the input signal and Hη(n1, . . . , nη) are the η
th-order Volterra kernels considering the truncated values
N1, . . . ,Nη for each kernel.

However, the number of samples N1, . . . ,Nη is high be-
cause the practical systems have large memories and the
identification of the kernelsHη(n1, . . . , nη) is ill-posed and
with serious problems with convergence. Fortunately, the
Volterra kernels can be expanded using Kautz functions to
overcome these drawbacks:

Hη(n1, . . . , nη) ≈
J1∑

i1=1

. . .

Jη∑
iη=1

Bη

(
i1, . . . , iη

) η∏
j=1

ψi j (n j) (2)

where J1, · · · , Jη are the number of samples in each or-

thonormal projections of the Volterra kernelsBη

(
i1, . . . , iη

)
and and ψi j (ni) are the Kautz functions that are appropriate
for the representation of underdamped oscillatory systems.

Details about the Kautz functions and how to use it for
nonlinear mechanical systems identification can be found
in [7] and [5]. It is important to see that the order of pro-

jection Bη

(
i1, . . . , iη

)
is lower and easier to obtain than the

order of Volterra kernel given byHη(n1, . . . , nη) [6].
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Thus, it is possible to rewrite the eq. (1) based on the
orthonormal Kautz basis:

y(k) ≈
+∞∑
η=1

Bη(k) (3)

where Bη(k) is the η−th orthonormal Volterra functional
operator:

Bη(k) ≈
J1∑

i1=1

. . .

Jη∑
iη=1

Bη

(
i1, . . . , iη

) η∏
j=1

li j (k)

that is a multiple convolution between the orthonormal ker-

nel given by Bη

(
i1, . . . , iη

)
and li j (k), that is a simple filter-

ing of input signal u(k) by the Kautz function ψi j (ni):

li j (k) =
V−1∑
ni=0

ψi j (ni)u(k − ni) (4)

where V = max{J1, . . . , Jη}.
The values of orthonormal Volterra kernelBη

(
i1, . . . , iη

)
can be grouped in a vector Φ and can be found by solving:

Φ = (ΓTΓ)−1ΓT y (5)

where the matrix Γ contains li j (k) and y =
[
y(1) · · · y(K)

]
.

It is worth to note that η can be usually truncated in 3 ker-
nels to represent the most part of the structural nonlineari-
ties with smooth behavior.

3 Damage detection approach

If a healthy state is known, the Volterra kernels can be
identified and used as reference based on the output mea-
sured in this condition. So, the reference state can be esti-
mated by:

yre f ≈
3∑
η=1

Bη(k) = y1,re f︸︷︷︸
linear

+ y2,re f + y3,re f︸����������︷︷����������︸
non-linear

(6)

where 3 kernels were considered. If we compare the pre-
diction error between the experimental output yexp with the
reference estimated by eq. (6), given by:

ere f = yexp − yre f (7)

it is expected that the statistical difference should be not
significant. Now, if an unknown structural condition is mea-
sured, given by xexp, the same Volterra model can be used
to try to estimate it:

xunk ≈
3∑
η=1

Bη(k) = x1,unk + x2,unk + x3,unk (8)

If there is no damage in the system, the reference Volterra
model can be able to estimate correctly the behavior. So,
the prediction error:

eunk = xexp − xunk (9)

should be low and close to the reference error given by eq.
(7). A feature index for damage detection can be extracted
through [4]:

λ =
σ(eunk)

σ(ere f )
(10)

where σ (◦) is the standard deviation operator. However,
it is worth to observe that the prediction error can be de-
scribed separately considering the linear and nonlinear con-
tributions given by Volterra kernels. This property allows
to monitor the linear and nonlinear terms separately. Thus,
we can define three different damage-sensitive index:

λlin =
σ(e1,unk)

σ(e1,re f )
(11)

λquad =
σ(e2,unk)

σ(e2,re f )
(12)

λcub =
σ(e3,unk)

σ(e3,re f )
(13)

where each error in reference condition is computed using:

e1,re f = yexp − y1,re f (14)

e2,re f = yexp − y1,re f − y2,re f (15)

e3,re f = yexp − y1,re f − y2,re f − y3,re f (16)

and each error in unknown condition is calculated by:

e1,unk = xexp − x1,unk (17)

e2,unk = xexp − x1,unk − x2,unk (18)

e3,unk = xexp − x1,unk − x2,unk − x3,unk (19)

The next section presents an experimental application
to show this approach.

4 Application in a buckled beam

Figure (1) shows an experimental setup used to illus-
trate the method. It is a test rig formed by a clamped beam
with dimensions of 460×18×2 mm and with a load applied
on the top. The nonlinearity is actioned by geometrical ef-
fect caused by the buckling load applied. A controlled elec-
trodynamic shaker is used to excite the beam considering
different levels of amplitude measured by a force sensor.

Fig. 1. Experimental setup of the clamped buckled beam.
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The velocity in the center of the beam is measured by
using a laser sensor. Four accelerometers are also used to
measure the vibration along the beam, but are not used in
the analysis of this work. Firstly some tests are made in the
undamaged condition in order to show the nonlinear be-
havior. A sinusoidal signal is applied in the shaker sweep-
ing up from 20 to 50 Hz in order to excite the first natural
frequency. Three different levels of amplitude in the signal
generator, named by low (0.01 V), medium (0.05 V) and
high (0.1 V) are used. All data acquisition is performed
considering a sampling rate of 1024 Hz and 4096 samples.

Figure (2) presents the FRF (frequency response func-
tion) varying the amplitude applied in the shaker. Clearly it
is observed a change of the resonance frequency when the
input force is increased that is caused by a nonlinear effect.
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Fig. 2. FRF considering a sinusoidal sweeping up with different

amplitude levels. The continuous line is the low input (0.01 V), �
is the medium input (0.05 V) and ◦ is the high input (0.10 V).

Similar hardening nonlinear effect and jump can be
also seen in fig. (3) when it is performed a stepped sine
test using a frequency resolution of 0.1 Hz.
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Fig. 3. Stepped sine showing the jump effect. The continuous line

is the low input (0.01 V), � is the medium input (0.14 V) and ◦ is

the high input (0.20 V)

The three orthonormal Volterra kernels are extracted to
have the reference model using the healthy dataset. The
identification is performed in two steps, firstly the B1(i1)
is estimated through the low input (linear part) and af-
ter B2(i1, i2) and B3(i1, i2, i3) are estimated using the high
input (nonlinear). Figure (4) shows the validation using

the power spectral density (PSD) of the reference Volterra
model using a sinusoidal input with frequency of 35 Hz.
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Fig. 4. PSD of the measured healthy response in comparison to

the one estimated by the reference Volterra model. The continu-

ous line is the experimental data and ◦ is the response estimated

by the Volterra model.

The damage is induced by a cut in the beam surface 50
mm from the stinger connection as seen in fig. (5). Three
different cuts are inserted with depth growing up, named by
Damage I (0.5 mm), Damage II (0.75 mm) and Damage III
(1.0 mm). The reference condition (healthy) is named by 0.
In each structural condition, the same excitation signal is
applied in the shaker with three different amplitude levels
totalizing twelve datasets for the analysis.

Fig. 5. Damage inserted by a cut in the beam.

The prediction errors can be analyzed in order to de-
tect modifications in the structural behavior of the beam.
Instead of observing the time-domain prediction errors, the
set of λ indexes can be used to detect damages. These in-
dexes are based on a ratio of the standard deviation of the
error in the unknown condition with the error in the refer-
ence state. So, a significant deviation from 1 can point out
the presence of damage in the structure. Figure (6) shows
the evolution of the λlin, λquad and λcub indexes comparing
the reference and the three damaged states.

In all the input amplitudes tested is possible to see the
increase in the deviation of the indexes with the increase
of the depth of the cut inserted in the beam. The indexes
λlin and λquad are also equal because the quadratic term of
the response of the Volterra model identified is not signif-
icant (absence of asymmetric effects). Another important
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observation is that the λcub is considerably more sensitive
to the structural change with the increase of the input am-
plitude. Besides that, the linear index λlin is not sensitive to
the damage when the amplitude force is high because the
nonlinearity dominates the system in this condition.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 I II III

λ
lin

Structural Condition

(a) Linear index (λlin)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 I II III

λ
qu

ad

Structural Condition

(b) Quadratic index (λquad)

0

5

10

15

20

0 I II III

λ
cu

b

Structural Condition

(c) Cubic index (λcub)

Fig. 6. Linear and nonlinear damage-sensitive index in three dif-

ferent input levels. ◦ is the low input (0.01 V), � is the medium

input (0.05 V) and � is the high input (0.1 V).

The cuts applied in the structure represent mostly a
variation in the linear parameters of the structure caused
by loss of mass and stiffness, but the nonlinear stiffness is
also affected. For this reason, the coefficient λcub composed
by the y1, y2 and y3 is the best because it considers both

the linear and nonlinear effects. Consequently, the λcub pro-
posed is more sensitive to small changes in the beam.

5 Final remarks

The results have found that the Volterra series can sep-
arate the linear and nonlinear contributions of the vibration
response and also provide a full diagnostic about the struc-
tural conditions. The nonlinear damage indexes showed to
be more efficient to the structural changes than the linear
one, specially when the beam tested operated in nonlinear
state. The statistical reliability of the nonlinear damage-
sensitive index using Volterra series should be investigated
in further works.
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