Oxide-assisted crack growth in hold-time low-cycle-fatigue of single-crystal superalloys

Akane Suzuki1,*, Yan Gao1, Don Lipkin1, Anjali Singhal1, Matthew Krug2, Douglas Konitzer2, Jonathan Almer3, Tresa Pollock4, and Bernard Bewlay1

1 GE Global Research, Niskayuna, NY, USA
2 GE Aviation, Cincinnati, OH, USA
3 Argonne National Laboratory, Advanced Photon Source, Lemont, IL, USA
4 University of California, Santa Barbara, Santa Barbara, CA, USA

Abstract. Compressive hold-time low-cycle fatigue is one of the important damage modes in Ni-based superalloy hot-gas path components. In strain controlled LCF, the compressive hold typically degrades fatigue life significantly due to creep relaxation and the resultant generation of tensile stress upon returning to zero strain. Crack initiation typically occurs on the surface, and therefore, the cracks are covered with layers of oxides. Recent finite element modeling based on experimental observations has indicated that the in-plane compressive stress in the alumina layer formed on the surface of the bond coat assists rumpling and, eventually, leads to initiation of cracks. The stress in the oxide layer continues to assist crack extension by pushing the alumina layer along the crack front during the compressive hold. In-situ measurements of the growth strains of alumina were performed using high energy synchrotron X-rays at Argonne National Lab. Specimens of single-crystal superalloys with and without aluminide coatings were statically pre-oxidized to form a layer of alumina at 1093 and 982 °C. For the in-situ synchrotron measurements, the specimens were heated up to the pre-oxidation temperatures with a heater. The alumina layers on both bare and coated specimens showed compressive in-plane strains at both temperatures. The oxide strains on the superalloys showed dependency on temperature; on the other hand, the oxide strains in the aluminide coatings were insensitive to temperature. The magnitude of the compressive strains was larger on the superalloys than the ones on the aluminide coatings.

1. Crack growth in hold-time LCF of single-crystal Ni-base superalloys

Resistance to compressive hold-time low-cycle-fatigue (LCF) deformation is one of the important properties required for Ni-base single-crystal superalloys used for internally cooled airfoil components in aircraft engines and land based gas turbines for power generation. Strain controlled compressive hold-time LCF deformation is significantly damaging to the superalloys, because creep deformation during the compressive hold causes the generation of tensile stress upon returning to zero strain. The tensile stress causes initiation and propagation of surface cracks which eventually lead to failure of the material. In a series of interrupted compressive hold-time LCF tests conducted at 1093 °C and 0.35% total strain range using a second generation single-crystal superalloy, René N5 coated with vapor phase aluminide (VPA), it was observed that (i) the surface crack initiation occurred in the early stage (<10%) of the fatigue life and (ii) the surface cracks were covered with an α-Al2O3 layer due to the exposure to the air [1]. Figure 1 shows a typical crack observed in the bond coat layer (Fig. 1a) and a crack propagated into the single-crystal superalloy substrate (Fig. 1b) beyond the bond coat layer and the interdiffusion zone.

It has been known that the α-Al2O3 layer formed on the surfaces of the bond coats of the superalloys typically have in-plane compressive growth strains due to the volume expansion during oxidation, and that the compressive stress of the oxide layer contributes to the evolution of bond coat rumpling during cyclic oxidation environment [2]. Evans et al. [3–5] examined the role of compressive growth strains of the α-Al2O3 layer in extension of a crack in isothermal compressive cyclic loading using a finite element model, and predicted that the compressive stress of the α-Al2O3 layer causes crack extension by inward extrusion of the α-Al2O3 layer along the crack front during compressive loading. The predicted crack growth rate was close to the crack growth rate observed in the interrupted specimens. The model predicted that larger compressive growth strains of the α-Al2O3 cause higher crack growth rates in both the bond coat layer and the superalloy substrate.

In-situ measurements of the oxide growth strains have been conducted by Veal et al. [6–11] and Almer et al. [12] using synchrotron X-rays. The evolution of

*a Corresponding author: suzukia@ge.com

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
2. Experimental procedures

The experimental arrangement is illustrated in Fig. 2. In this experiment, a transmission diffraction approach was applied for the oxide growth strain measurements. Compared with the grazing incident diffraction mode used by Veal et al. [6–11], the transmission diffraction mode used by Almer et al. [12] requires high energy X-rays to penetrate through the material. As the oxide layer thickness is \(\sim 1 \mu m\), such high energy X-rays must be from a high brilliance source. The experimental procedure for the transmission diffraction mode is simpler than grazing incident diffraction mode, because it is easier to find the beam center and to align the specimen: both are critical for accurate strain analysis.

The high energy synchrotron X-ray diffraction experiment was performed at Beamline 1-ID-C at Advanced Photon Source, Argonne National Laboratory. A Ni-based René N5 single-crystal superalloy and a \(\beta\)-NiAl-based vapor phase aluminide bond coat were selected for the experiments. The bond coat was deposited on a single-crystal superalloy substrate. Both bare and coated superalloy specimens were machined to 6 mm wide, 10 mm long, 3 mm thick coupons. Prior to the strain measurements, the coupons were isothermally oxidized in air for 68 hours at either 1093 \(^\circ\)C or 982 \(^\circ\)C to grow oxide layers in advance, to achieve stable state of the oxide growth.

The measurements were conducted at both room temperature and the same high temperatures at which the specimens were pre-oxidized. To heat the pre-oxidized coupons during the \textit{in-situ} measurements, a commercial SiC igniter was used. The surface of the igniter was coated with a protective layer to prevent reaction with the superalloy specimens.

During the \textit{in-situ} measurements, the sample surface temperatures were monitored by a pyrometer mounted above the sample, and were determined based on a lattice parameter of Pt powders placed on the surfaces of the samples. Slurry containing Pt powders and yttria-stabilized zirconia (YSZ) powders was painted to partly cover the oxidized surfaces of the coupons. The YSZ powders were used to prevent the Pt particles from coalescing during high temperature exposure. The thermal expansion of Pt was used for determining the temperature of the oxide layer.

The diffraction data was collected by a GE two-dimensional detector, using 70 keV X-rays focused to a 20 \(\mu m\) high and 200 \(\mu m\) wide rectangle shape.
The beam center and detector distortion were determined using unstrained ceria powder diffraction pattern. In-plane strain was obtained from the elliptical distortion of the diffraction rings using \(\sin^2 \psi \) method \([6, 12, 15]\). The elliptical distortion, \(D \), is
\[
D = (d_{\phi=0} - d_{\phi=90})/d_{\phi=90}.
\]
(1)

Where \(d_{\phi=0} \) is the in-plane lattice spacing and \(d_{\phi=90} \) is the out-of-plane lattice spacing for a given \((hkl)\). The sign of this quantity identifies a tensile (+) and compressive (−) condition. Quantities of \(d_{\phi=0} \) and \(d_{\phi=90} \) were obtained by fitting diffraction ring of \(\alpha-Al_2O_3 \) (116) based on the 2D diffraction formulas by He et al. \([17]\) using the MATLAB program by Almer et al. \([12]\). Among the \(\alpha-Al_2O_3 \) reflections, the (116) reflection was chosen, because it is a high order reflection with a relatively high intensity and no overlap with reflections from other oxides. To quantify the in-plane strain state \(\varepsilon_{11} \), it was assumed that the oxide is an isotropic distribution of crystallites in a biaxially stressed film with no shear based on the observation of the diffraction rings showing absence of strong texture in the \(\alpha-Al_2O_3 \) layer (Sect. 3.2.1).

\[\varepsilon_{11} \approx \frac{D(1 - \nu)}{(1 + \nu)} \]
(2)

where \(\nu \) is Poisson’s ratio, and that the stress \(\sigma_{11} \) is
\[\sigma_{11} \approx E \varepsilon_{11} / (1 - \nu) \]
(3)

where \(E \) is Young’s modulus.

Table 1 shows Young’s modulus, \(E \), and Poisson’s ratio, \(\nu \), of \(\alpha-Al_2O_3 \) at the room temperature, 982°C, 1093°C used for the strain and stress calculations. Based on our assessment of literature data, the values measured by Sakaguchi et al. \([18]\) and Fukuhara et al. \([19]\) using pure bulk \(\alpha-Al_2O_3 \) were selected.

Table 1. Young’s modulus and Poisson’s ratio of \(\alpha-Al_2O_3 \) used for the strain and stress calculations.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Young’s modulus (GPa)</th>
<th>Poisson’s ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room temperature</td>
<td>380</td>
<td>0.24</td>
</tr>
<tr>
<td>982°C</td>
<td>330</td>
<td>0.25</td>
</tr>
<tr>
<td>1093°C</td>
<td>322</td>
<td>0.25</td>
</tr>
</tbody>
</table>

3. Results and discussions

3.1. Oxide structure

The backscattered electron images of the oxide layers formed on the bare René N5 single-crystal superalloy and the vapor phase aluminate coating samples after the exposure for 68 hours at 1093°C and 982°C are shown in Fig. 3.

At both temperatures, the René N5 specimen formed three layers of oxides: a NiO external layer, a spinel (Ni(Al,Cr)\(_2\)O\(_4\)) layer where fine particles of CrTaO\(_4\) were embedded, and an \(\alpha-Al_2O_3 \) layer adjacent to the superalloy substrate. The thickness of the \(\alpha-Al_2O_3 \) layer was about 1 \(\mu \)m after the exposure at 1093°C, and about 0.5 \(\mu \)m after the exposure at 982°C. The thickness of the spinel layer was about 1 \(\mu \)m at both temperatures.

The vapor phase aluminate coating specimens formed a layer of \(\alpha-Al_2O_3 \) after the exposure at 1093°C and 982°C. The thickness was about 3 \(\mu \)m. In the coupon oxidized at 1093°C, formation of \(\gamma’-Ni_3Al \) phase was observed beneath the \(\alpha-Al_2O_3 \) layer due to the consumption of Al.
3.2. Oxide growth strains

3.2.1. Oxide growth strains at room temperature

An example of diffraction rings obtained from the oxide layer of the René N5 specimen pre-oxidized at 1093°C is shown in Fig. 4a. Figure 4b shows the lattice spacing as a function of azimuth angle. Since the specimen was pre-oxidized at elevated temperature, the diffraction rings exhibited significant strains at room temperature due to the contraction of the superalloy. The lattice spacing of the α-Al₂O₃ was smaller at 0 and 180° than at 90°, which indicates that there is an in-plane compressive strain in the α-Al₂O₃ layer. Using a MATLAB code [12, 17], \(d_{\psi=90°} \) and \(d_{\psi=0°} \) of the \(\alpha-Al₂O₃ \) (116) reflection were determined, and \(\varepsilon_{11} \) and \(\sigma_{11} \) were calculated using the Eqs. (1)–(3). The intensities of the \(\alpha-Al₂O₃ \) diffraction rings are relatively constant from 0 to 180° (Figs. 4a–c), which indicates that the \(\alpha-Al₂O₃ \) layer does not have strong grain texture. Table 2 shows the room temperature in-plane stresses and strains in the \(\alpha-Al₂O₃ \) layer on the René N5 and the vapor phase aluminide coating specimens. All specimens exhibited large in-plane compressive strains up to 1%. The René N5 specimen pre-oxidized at 1093°C exhibited a larger compressive in-plane strain than at 982°C. The vapor phase aluminide specimens had almost same strains regardless of the pre-oxidation temperatures.

Table 2. Room temperature in-plane stresses and strains of the \(\alpha-Al₂O₃ \).

<table>
<thead>
<tr>
<th>Material</th>
<th>Pre-oxidation temperature (°C)</th>
<th>In-plane stress, (\sigma_{11}) (GPa)</th>
<th>In-plane strain, (\varepsilon_{11}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>René N5</td>
<td>1093</td>
<td>-4.95</td>
<td>-0.99</td>
</tr>
<tr>
<td></td>
<td>982</td>
<td>-3.87</td>
<td>-0.77</td>
</tr>
<tr>
<td>Vapor phase aluminide</td>
<td>1093</td>
<td>-2.71</td>
<td>-0.54</td>
</tr>
<tr>
<td></td>
<td>982</td>
<td>-2.70</td>
<td>-0.54</td>
</tr>
</tbody>
</table>

3.2.2. In-situ oxide growth strain measurements

Figure 4c shows the lattice spacing plot of the same specimen obtained after heating to 1093°C. The lattice spacing of the \(\alpha-Al₂O₃ \) (116) peak showed little dependency on azimuth angle. However, using the same diffraction peak analysis algorithm, it was confirmed that there was a small in-plane compressive stress and strain. Figure 5 shows the in-plane strains of the \(\alpha-Al₂O₃ \) layer on the René N5 and the vapor phase aluminide coating specimens during the measurements at 1093°C (Fig. 5a) and 982°C (Fig. 5b). During the measurements, the oxide growth strains were consistent over the time. These results indicate that strain accumulation due to oxide growth and strain relaxation due to creep are in near equilibrium condition after the pre-oxidation for 68 hours. Table 3 summarises the in-situ measurement results. The \(\alpha-Al₂O₃ \) had larger in-plane compressive strains on the René N5 specimens compared with the vapor phase aluminide specimens at both temperatures. The oxide growth strain on the René N5 was higher at 982°C than at 1093°C. On the other hand, the oxide growth strain on the vapor phase aluminide specimen did not show temperature dependency.

The dominant source of potential error to the measured strain value is temperature uncertainty. The temperature uncertainty can cause thermal expansion or contraction of the superalloy substrate, which can be as much as 0.02% strain. The errors from the strain analysis of the 2D diffraction patterns [12, 17] are less than 0.01%, which is much smaller than that from temperature uncertainty.
NiAl based bond coats were performed using high energy layers formed on the single-crystal superalloy and the β-

Table 3. In-situ in-plane stress and strain of the α-Al2O3 layer.

<table>
<thead>
<tr>
<th>Material</th>
<th>Temperature (°C)</th>
<th>In-plane stress, σ_{11} (GPa)</th>
<th>In-plane strain, ε_{11} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>René N5</td>
<td>1093</td>
<td>−0.17</td>
<td>−0.54</td>
</tr>
<tr>
<td></td>
<td>982</td>
<td>−0.10</td>
<td>−0.21</td>
</tr>
<tr>
<td>Vapor phase aluminide</td>
<td>1093</td>
<td>−0.40</td>
<td>−0.09</td>
</tr>
<tr>
<td></td>
<td>982</td>
<td>−0.43</td>
<td>−0.10</td>
</tr>
</tbody>
</table>

Figure 6. Comparison of the compressive in-plane strains of the α-Al2O3 layer formed on René N5 single-crystal superalloy and three β-NiAl based bond coats.

3.2.3. Oxide growth strains on β-NiAl bond coats

The same in-situ oxide growth strain measurement approach was applied to two different β-NiAl based industrial bond coats. Figure 6 shows a comparison of the in-plane compressive strains of the α-Al2O3 layers. The strains measured on three different β-NiAl based bond coats were consistently smaller than the ones on René N5, and roughly at −0.1%, independent of bond coat chemistry and temperature. Smaller in-plane compressive oxide growth strains are expected to be beneficial in suppressing both bond coat rumpling and oxide-assisted crack growth. However, the obtained results indicate that it may be difficult to reduce the compressive oxide growth strains on the β-NiAl based bond coats by modifying bond coat chemistry. Exploration of different bond coat systems outside the β-NiAl based compositions may be required to identify an alternate path to improve crack growth resistance of the bond coat materials.

4. Summary

In-situ measurements of the growth strains of the α-Al2O3 layers formed on the single-crystal superalloy and the β-NiAl based bond coats were performed using high energy synchrotron X-rays. The followings were observed:

1. At elevated temperatures, the in-plane growth strains of the α-Al2O3 were compressive in both René N5 superalloy and vapor phase aluminide bond coat specimens.
2. The in-plane compressive growth strains of the α-Al2O3 formed on the β-NiAl based bond coats were smaller than those on the superalloy specimen, and independent of bond coat chemistry and temperature.

The authors are thankful to S.J. Duclos, M.L. Blohm, PR Subramanian for their program support, J.R. Cournoyer, E.H. Hearn of GE Global Research, and Ali Mashayekhi and Roger Ranay at Sector 1 of APS are greatly acknowledged for their technical support.

Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

References

[13] B. Laux, T.M. Pollock (to be published)

