Short-crack modelling of the effect of corrosion pits on the fatigue limit of a 12% Cr steel

Gunnar Härkegård

Norwegian University of Science and Technology, 7491 Trondheim, Norway

EPRI organised an international research project [1], where ultrasonic testing was used to determine the fatigue limit of plain specimens of 12% Cr steel at $R > 0$ with artificially produced, sub-mm size corrosion pits. Moreover, the plain fatigue limit of uncorroded specimens was determined at $R > 0$, and fatigue-crack-growth testing, including the threshold, was carried out at R-values ranging from -1 to 0.9. This comprehensive set of fatigue data constitutes an ideal basis for investigating the capability of a variety of methods to predict the fatigue limit of pitted specimens.

A pre-pitting procedure was used to produce single, nearly spheroidal corrosion pits as shown in Fig. 1. The semi-width-to-depth ratio r/d was typically around 0.5. It was therefore decided to model two extremes: a semi-spherical pit with $r/d = 1$ and a cylindrical “pit” with $r/d = 0$. To simplify the analysis, the fatigue behaviour of the semi-spherical surface pit was approximated by that of a spherical pore in a wide body.

Consider an annular crack of depth a at the equator of a spherical pore. For a shallow crack, $a \ll a^*$, the asymptotic stress intensity factor is given by

$$\Delta K = 1.12K_t\Delta S\sqrt{\pi a}, \quad K_t = \{\nu = 0.3\} = 2.05,$$

for a deep crack, $a \gg a^*$, by

$$\Delta K = (2/\pi)\Delta S\sqrt{\pi(a + r)}.$$

Interpolation between the two asymptotes, in good agreement with a numerical solution presented by Murakami [2], is accomplished through

$$\Delta K = (2/\pi)\Delta S\sqrt{\pi(a + \theta r)}, \quad 0 \leq \theta < 1,$$

where the interpolation function θ is defined as

$$\theta = 1 - e^{-a/a^*}, \quad a^* = r/(k^2 - 1), \quad k = 1.12K_t/(2/\pi).$$

The driving force for fatigue-crack growth is assumed to be given by an “equivalent” stress-intensity range, ΔK_{eq}, based on original ideas by El Haddad and Härkegård as recently described by Zambrano and Härkegård [3]. Formally, ΔK_{eq} is obtained by adding to the physical crack depth, a, a suitably chosen “intrinsic” crack depth, a_0. Thus, for a shallow annular crack, $a \ll a^*$, the asymptotic ΔK_{eq} is

* Corresponding author: gunnarh@ntnu.no

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
given by
\[\Delta K_{eq} = 1.12 K_t \Delta S \sqrt{\pi (a + a_{0s})}, \quad a_{0s} = (1/\pi) (\Delta K_{th}/1.12 \Delta \sigma_A)^2, \]
for a deep crack, \(a \gg a^* \), by
\[\Delta K_{eq} = (2/\pi) \Delta S \sqrt{\pi (a + r + a_{0d})}, \quad a_{0d} = (1/\pi) (\Delta K_{th}/(2/\pi) \Delta \sigma_A)^2. \]
Interpolation between the two asymptotes is obtained by
\[\Delta K_{eq} = (2/\pi) \Delta S \sqrt{\pi [a + \theta r + \theta a_{0d} + (1 - \theta) K_t^2 a_{0s}]} \]
By adjusting \(\Delta S \) so that \(\Delta K_{eq,\min} = \Delta K_{th}(R) \), the model predicts the fatigue limit of a specimen with a single corrosion pit. Fig. 2 shows the predicted fatigue limit, \(\Delta S \), vs. the (semi-spherical) pit radius, \(r \), for three different stress ratios. In the same diagram have been plotted data from ultrasonic fatigue testing [1]. Three categories of data points have been identified: “failure” from a few 100 000 cycles and upwards, and “no crack” or a (short) “self-arrested crack” (SAC) observed after more than 10\(^9\) cycles. With the exception of an odd data point at \(r > 0.1 \text{mm} \), predictions are conservative. Clearly, the predictions for a cylindrical “pit” (\(r/d = 0 \)) would fall below those for the semi-spherical pit. Investigations of the predictive capability of other criteria such as those due to Smith and Miller [4] and Murakami [5] are ongoing.
References

