Measurement of carbon dioxide solubility in aqueous solution of sodium hydroxide from 293 to 333 K up to 5 MPa

P. Cézac¹, F. Contamine¹, G. Bassil¹, J.P. Serin¹, F. Lucile¹, O. Baudoin², D. Houssin³, and P. Arpentinier³

¹LaTEP-ENSGTI (Laboratoire de thermique énergétique et procédé, rue Jules Ferry), Université de Pau et des Pays de l’Adour, BP7511, 64075 Pau Cedex France
²ProSim SA, immeuble Stratège 1, 51 rue Ampère, 31370 Labège
³Air Liquide, Centre de Recherche Claude-Delorme, 78350 Les Loges-en-Josas France

Production of carbon dioxide from burning fossil fuel participates in the global warming. This issue generates a growing interest for CO₂ capture and storage from oxy fuel combustion. Before the sequestration step, the CO₂ has to be purified from impurities. Separation processes require a good knowledge of thermodynamics properties of phase equilibria. In this context a new experimental device was designed and set up in the LaTEP to allow the study of the solubility of gas mixture involved in CO₂ capture and storage processes (CO₂, O₂, NOx, SO₂). The apparatus was, first, validated by studying the CO₂-water system in the temperature range from 293.15 K to 393.15 K and at pressure up to 5 MPa. Then, the CO₂-water-NaOH was studied because few data are available in the scientific literature. Experimental data obtained were compared with calculated data obtained from Pitzer, Edwards and NRTL electrolyte models.