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Abstract. The Volterra series expansion is widely employed to represent the input-output relationship of 

nonlinear dynamical systems. Such a representation is based on the Volterra frequency-response functions 

(VFRF), which can be calculated from the equation governing the system by the so-called harmonic probing 

method. This operation is straightforward for simple systems, may reach a prohibitive level of complexity for 

multiple-input systems when the calculation of a high-order VFRF is required. An alternative technique for the 

evaluation of the VFRFs of multiple-input systems is here presented generalizing an existing technique 

originally limited to the scalar case. A 2-dof mechanical example is used to illustrate the application of the 

technique. 

1 Introduction  

The Volterra series is a mathematical tool widely 

employed for the representation of the input-output 

relationship of nonlinear dynamical systems. It is based 

on the expansion of the nonlinear operator representing 

the system into a series of homogeneous operators, 

formally similar to the Duhamel integral usually 

employed for the analysis of linear systems. Such 

integrals are multi-dimensional ones and are completely 

defined given the Volterra kernels, i.e. the multi-

dimensional generalization of the impulse-response 

function [1]. An alternative representation is provided by 

the Volterra frequency-response functions (VFRF), which 

represents the frequency-domain counterparts of the 

Volterra kernels and can be reviewed as a generalization 

of the usual frequency-response function. A fairly large 

class of dynamical systems can be treated according to 

these concepts, and therefore represented in terms of 

VFRFs. 

When an analytical model of the dynamical system is 

available (e.g. through a non-linear differential equation), 

the VFRFs are traditionally calculated by means of the 

harmonic probing method, consisting in evaluating 

analytically the response of the system excited by 

products of harmonic functions with different frequencies 

[2]. This approach to synthesize Volterra systems is 

straightforward when the governing differential equation 

is reasonably simple, but may reach a prohibitive level of 

computational complexity when dealing with high-order 

nonlinear systems or for the calculation of a high-order 

VFRF [3]. The practical application of the harmonic 

probing technique becomes even more complicated when 

the considered system has multiple input and the possible 

combinations of input harmonics to be probed increase 

dramatically [4]. 

An approach alternative to the harmonic probing has 

been presented in [5] for the case of scalar systems. It 

involves the representation of a complex dynamical 

system by an assemblage of simple operators for which 

VFRFs are readily available (essentially polynomial 

operators and derivatives). The topology of the 

assemblage is determined by the mathematical structure 

of the governing equation and the VFRFs of the 

composite system are evaluated by composing the VFRFs 

of the elementary building blocks by means of algebraic 

rules. 

The present paper discusses the extension of the 

aforementioned approach to the synthesis of multiple-

input/multiple-output systems. The adoption of a 

vectorial format and the use of the Kronecker algebra 

enable the definition of assemblage rules formally similar 

to the ones adopted for scalar systems.  

The use of the proposed procedure is illustrated by 

synthesizing a simple non-linear system, calculating its 

VFRFs of any order. The accuracy of the Volterra series 

representation is discussed through a numerical 

application involving the computation of both 

deterministic and stochastic response. 

2 Theoretical background  

Let us consider the nonlinear system represented by the 

following equation: 
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 ( ) ( )t tx uH  (1) 

u(t) and x(t) being vectors with size n and m, 

respectively, representing the input and the output; t is the 

time. If the operator H [] is time-invariant and has finite-

memory, its output x(t) can be expressed, far enough 

from the initial conditions, through the Volterra series 

expansion [1]: 
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where j = [1…j]
T
 is a vector containing the j integration 

variables; the functions hj have values in ℝm×nj
 and are 

called Volterra kernels. The product operator is 

interpreted as a sequence of Kronecker products, i.e.: 
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The 0
th

-order term of the Volterra series, h0,  is a constant 

independent of the input; the 1
st
-order term is the 

convolution integral typical of the linear dynamical 

systems, with h1 being the impulse response function. 

The higher-order terms are multiple convolutions 

involving products of the input values for different delay 

times. 

A Volterra system is entirely determined by its 

constant output and its Volterra kernels. An alternative 

representation is provided, in the frequency domain, by 

the Volterra frequency-response functions (VFRF), the 

multi-dimensional Fourier transforms of the Volterra 

kernels: 
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where j=[1…j]
T
 is a vector containing the j circular 

frequency values corresponding to 1,…, j in the Fourier 

transform pair. The VFRFs are functions with values in 

ℂm×nj
. 

3 VFRFs for composite systems 

Rules for the parallel and series assemblage of Volterra 

systems, as well as for their product and power are briefly 

discussed. The proofs are not reported for reason of 

space, but can be easily derived following the procedures 

applied in [5]. 

3.1 Parallel assemblage of Volterra systems 

When a nonlinear operator H  is realized by the parallel 

assemblage (or sum) of the Volterra operators A  and B , 

i.e. x=H[u]=A[u]+B[u] ,  then the VFRFs of H  can 

be obtained as: 

       0,1,j j j j j j j  H Ω A Ω B Ω  (5) 

where Aj and Bj are VFRFs of A and B , respectively. 

3.2 Product of Volterra systems 

Let us consider a nonlinear operator H consisting of the 

Kronecker product of the Volterra systems A and B, i.e., 

x=H[u]=A[u]B[u] .  The VFRFs of H  can be 

obtained as: 
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where p
(j,k)

 (p = 1,…,k) are sequences of numbers such 

that 
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and 1
(j,k)

,…, k
(j,k)

 are vectors with size, respectively, 

1
(j,k)

,…, k
(j,k)

 partitioning j. 

These results can be obviously generalized to the 

iterated Kronecker product, i.e. x=H[u]=A [u]
[ k ]

= 

A[u] . . .A[u]  (k  t imes) . 
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where the product operator is interpreted as a sequences 

of Kronecker products. 

3.3 Series assemblage of Volterra systems  

Let us consider an operator H  consisting of the series 

combination between the two Volterra systems A and B, 

in such a way that the output y =A[u] of the operator A  is 

the input for the operator B, i.e. H= B[A[u]].  The 

VFRFs of H can be obtained as: 
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where N
B
 is the order of the system B and S

(j,k)
 is a 

matrix of dimension kj defined as: 
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It is worth noting that the j-order term of Eq. (9) 

contains all the VFRFs Ak for k  j and that, if A0 = 0, 

then all the sequences containing an r
(j,k) 

= 0 do not give 

any contribution to the sum, thus the VFRF Hj contains 

only the VFRFs Bk with k  j, while Aj appears only once, 

multiplied by B1. In this case, Eq. (9) can be rewritten in 

the simplified form: 
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where the only term in Aj has been extracted from the 

summation and j is the sum of the components of the 

vector j. 

If B is a linear homogeneous operator (i.e., no DC 

output), then Eq. (9) becomes very simple, resulting 

     1j j j j jH Ω B Ω A Ω  (12) 

while if, on the contrary, A is a linear homogeneous 

operator, then Eq. (9) becomes 

      
1

1

j
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4 Numerical example 

As an example of application of the synthesis techniques 

discussed above, the 2-dof mechanical system described 

in [4] (figure 1) is considered. Adopting a vectorial 

notation, such a system can be represented by the 

differential equation: 

[2] [3] [2] [3]

1 2 3 1 2 3      Mx C x C x C x K x K x K x u (14) 

where the vector x = [x1  x2]
T
 contains the displacement of 

the two masses and u = [u1 u2]
T
 the corresponding 

external forces; M is the mass matrix, C1, C2 and C3 are 

linear and non-linear damping matrices, K1, K2 and K3 

linear and non-linear stiffness matrices. The superscript 


[k]

 represents the Kronecker power. With reference to 

figure 1, the matrices the defining the system are given 

as: 
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K2 and K3 are sparse matrices having the only non-zero 

entries [K2]1,1 = k2 and [K3]1,1=k3. The numerical values 

adopted in the calculation are the same as in [4]. 

The VFRFs of the whole mechanical system can be 

obtained by using the assemblage rules described in 

Section 3. To this purpose, the system defined by Eq. 

(14) must be re-casted considering its non-linear terms as 

a feedback for the linear part represented by the operator 

D
1

 (figure 2). 

Reading the scheme of figure 2 from right to left, the 

following operatorial equation can be obtained equating 

the (reversed) linear part of the system, 

1 1[ ]   x Mx C x K xD , and the feedback branch: 

       x u x xD A B  (16) 

where the operators A and B are schematically defined in 

figure 2. Since all these operators have a polynomial 

structure, their VFRFs can be easily obtained as: 
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with Aj = Bj = 0 for j  2, 3. 

Assuming that x is the output of an unknown operator 

H  (i.e., x = H[u]), then Eq. (16) can be rewritten as 

                 u u u uD H A H B H  (18) 

 

Fig 1. Mechanical system considered in the example (from [4]). 

 

Fig 2. Scheme of the system to be synthesized. 

The VFRFs of the left-hand side and of the right-hand 

side of Eq. (18) can be obtained through the assemblage 

rules defined in Section 3 and equated order by order. At 

the 0
th

 order, it results H0 = 0 as the only solution of the 

non-linear algebraic equation: 

  [2] [3]

0 2 0 3 00  D H A H A H  (19) 

At the 1
st
 order the VFRF is simply obtained by the 

inversion of D 
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and for any order j  2 the VFRFs are given as: 
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in which the j
th

-order VFRF is obtained as a function of 

the VFRFs with orders up to j – 1. 

Figure 3 shows the absolute value of the 2
nd

-order VFRF 

calculated by Eq. (21). 

 

Fig. 3. Absolute value of the 2nd-order VFRF. 

Figure 4 shows a 1 s long time history of the response 

x1(t) obtained by time-domain integration of the non-

linear differential equation and by the frequency-domain 

calculation based on the Volterra series of order 1, 2 and 

3. The input u is constituted by two uncorrelated, zero-

mean, stationary Gaussian random process having 

constant Spectral Density function (PSD) in the harmonic 

band between 1 = 11 and 2 = 21, zero elsewhere and 

standard deviation u1 = u2 = 1.58 N. Samples of the 

input process are generated by a Monte Carlo Simulation 

(MCS) method. 
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Fig 4. Time history of the displacement component x1(t). Time 

domain integration (dots), 1st-order Volterra system (blue), 2nd-
order Volterra system (green), 3rd-order Volterra system (red). 

Figure 5 shows the PSD of the displacement of x1. 

The PSD of the original non-linear model is obtained by 

time-domain MCS, while the PSDs of the Volterra 

models are calculated in the frequency domain from the 

VFRFs [5]. It can be observed that the linear model 

represents the results of the original system only in the 

harmonic range in which the excitation is present; the 2
nd

-

order model represents the response up to the frequency 

22; the 3
rd

-order model up to 32. 
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Fig 5. PSD of the displacement component x1(t). MCS (dots), 

1st-order Volterra system (blue), 2nd-order Volterra system 

(green), 3rd-order Volterra system (red). 

5 Conclusions 

The idealization of a given dynamical system as an 

assemblage of elementary operators (building blocks) 

enables the evaluation of its VFRFs of any order by 

means of algebraic rules. The rules governing the 

assemblage of multi-input/multi-output systems are 

formally analogous to the ones derived for scalar system 

with the only complication involved in the use of the 

vectorial notation and the Kronecker algebra. A 

numerical example demonstrated the application of the 

proposed technique on a 2-dof mechanical system excited 

by both deterministic and stochastic loads.  
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