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Abstract. A linear stability analysis is used to investigate the influence of mechanical vibration on the onset
of thermosolutal convection in a horizontal porous layer heated and salted from above. Vibrations are considered
with arbitrary amplitude and frequency. The Brinkman extended Darcy model is used to describe the flow and
the Oberbeck-Boussinesq approximation is employed. Continued fraction method and Floquet theory are used
to determine the convective instability threshold. It is found that the solutal Rayleigh number has the stabilizing
effect. The existence of a closed disconnected loop of synchronous mode is predicted in the marginal curve for
moderate values of solutal Rayleigh number and vibration amplitude.

1 Introduction

The study of thermal convection in a fluid layer with modu-
lated gravitational field is an important class of problem in
heat transfer. The effect of gravity modulation on a convec-
tively stable configuration can significantly influence the
stability of a system by increasing or decreasing its suscep-
tibility to convection. Gresho and Sani [1] and Gershuni et
al. [2] have first investigated the effect of sinusoidal grav-
ity modulation in a differentially heated fluid layer through
linear stability analysis. They found that the system is sta-
bilized for small amplitude vertical oscillations. These re-
sults were later confirmed by Biringen and Peltier [3] who
made a more general nonlinear three dimensional analy-
sis. Aniss et al. [4] studied the influence of time depen-
dent gravity on the instability threshold for a fluid layer
confined in a Hele-Shaw geometry. They found that the
parametric oscillations can affect the convective instabil-
ity threshold when the Prandtl number is small compared
to unity. The first experimental study on Rayleigh-Bénard
convection in the presence of vertical vibration was con-
ducted by Rogers et al. [5]. Their interest was in the study
of the complex ordered patterns of convection generated
under such conditions. These and all other related studies
found in the literature involving thermal convection with
time dependent gravity were all motivated by the difficul-
ties faced during crystal growth, solidification of molten
alloys and other related industrial processes.

The studies dealing with gravity modulation on con-
vection in porous media induced by mechanical vibrations
are quite recent. Zenkovskaya and Rogovenko [6] and Goven-
der [7] have investigated the effect of vertical vibration on
the onset of convection in a Darcian porous layer subject to
high frequency and low-amplitude vibrations respectively.
Recently, Strong [8] reported the results of this problem
for arbitrary range of modulation parameters by the use
of continued fraction method. There are also few recent
works available in the literature dealing with thermovi-
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brational convection in a more general Brinkman porous
medium (see [9–12]). In our recent study [9], the stabil-
ity of convection in a Brinkman porous layer in the pres-
ence of vibrations of arbitrary amplitude and frequency
was considered. It was demonstrated that the vibration am-
plitude favors as well as suppresses the setting up of con-
vection depending on the vibration frequency for a layer
heated from below whereas it always favors convection
irrespective of the vibration frequency for a layer heated
from above.

Convection occurring in fluids when spatial variations
of a salt, with a different molecular diffusivity, is added
to the existing thermal gradients is termed as double dif-
fusive convection or more specifically thermosolutal con-
vection. The double diffusive convection of the Horton-
Rogers-Lapwood problem for various thermal and solutal
boundary conditions was first investigated by Nield [13]
using linear stability theory. Tanton et al. [14] extended
Nield’s analysis and considered fingering convection in a
porous layer. Rudraiah et al. [15] performed finite ampli-
tude study based on a truncated representation of Fourier
series and found that subcritical instabilities are possible
in the case of two component fluids. Poulikakos [16] ex-
tended the study to Lapwood-Brinkman case and presented
the critical limits for both monotonic and oscillatory modes.
The growing volume of work devoted to this area with dif-
ferent orientations of thermal and solutal gradients with re-
spect to each other are well documented by Nield and Be-
jan [17].

There are also few works available in the literature per-
taining to the stability of thermovibrational convection in
a binary fluid saturated porous medium. The influence of
mechanical vibration on the onset of convection in a con-
fined cavity saturated with two-component fluid was exam-
ined by Jounet and Bardan [18]. It was shown that, when
the solutal and thermal buoyancy forces are opposing, there
is a possibility of Hopf bifurcation. A brief review of the
findings related to the above subject have been given by
Razi et. al [19]. Recently, Strong [20] investigated the vi-
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brational thermosolutal convection in a horizontal Darcy
porous layer and constructed the neutral curves for syn-
chronous, subharmonic and quasiperiodic instability modes.
More recently, Siddheshwar et al [21] performed a weakly
nonlinear analysis for this problem using Ginzburg-Landau
equation in the presence of small amplitude oscillations.
In the present study, our aim is to investigate the effect of
vertical harmonic vibration on the onset of thermosolutal
convection for a wide range of modulation parameters in a
Brinkman porous medium heated from above.

2 Mathematical formulation

We consider a binary fluid saturated porous layer, confined
between two horizontal surfacesz = 0 andz = h of infi-
nite extent. The layer is both heated and salted from above.
We assume that the layer and its boundaries are subjected
to vertical harmonic vibration. Brinkman’s law is used to
model the flow through it after neglecting inertial effects.
The equation of state has

ρ = ρ0[1 − β(T − T0) + βc(C −C0)] (1)

whereρ is the density,T the temperature,C the concen-
tration,β the thermal expansion coefficient andβc the con-
centration expansion coefficient (β >0 andβc > 0). The
appropriate equations governing laminar flow through the
porous medium under the Oberbeck-Boussinesq approxi-
mation are
1
ϕ

∂v
∂t
+

1
ϕ2

v · ∇v=−
1
ρ
∇p−

ν

K
v+ν∇2v+(βT−βcC)g(t)̂k (2)

κ
∂T
∂t
+ v · ∇T = χ∇2T (3)

ϕ
∂C
∂t
+ v · ∇C = Dm∇

2C (4)

∇ · v = 0 (5)

wherev = (v1, v2, v3) is the filtration velocity,p the pres-
sure,ϕ the porosity,K the permeability,ν the kinematic
viscosity, k̂ the unit vector directed vertically upward,κ
the heat capacity ratio,χ the thermal diffusivity andDm

the mass diffusivity of the porous medium. Time depen-
dent gravitational field is taken to beg(t) = g0+

A
ϕ
Ω2 f ′′(τ),

where g0 is a reference acceleration level,A the vibra-
tion amplitude,Ω the vibration frequency andf (τ) the 2π-
periodic function with zero 2π-average.

We study the stability of the following quiescent basic
statev0 = 0, T0 = T1 − az andC0 = C1 − bz, where
a = (T2 − T1)/h andb = (C2 − C1)/h, using the method
of small perturbations. The following scales are used to
nondimensionalize the variables:

(x, t, v, p,T,C)→

(
h,

h2

ν
,
ν

h
,
ρν2

K
,ah,bh

)
(6)

The non-dimensional governing equations are

c
∂u
∂t
=−∇q− u+Da∇2u+(GrTθ −GrSφ)(1+η f ′′(τ))̂k (7)

κ
∂θ

∂t
− u3 =

1
Pr
∇2θ (8)

ϕ
∂φ

∂t
− u3 =

1
S c
∇2φ (9)

∇ · u = 0 (10)

whereDa = K/h2 the Darcy number,GrT = βah2g0K/ν2

the thermal Grashof number,GrS = βcbh2g0K/ν2 the so-
lutal Grashof number,Pr = ν/χ the Prandtl number,S c=
ν/Dm the Schmidt number,c = Da/ϕ the porosity - per-
meability parameter,η = AΩ2/ϕg0 the amplitude andω =
Ωh2/ν the frequency of modulation. The nondimensional
stress free boundary conditions are

u3 =
∂2u3

∂z2
= θ = φ = 0 atz= 0 andz= 1 (11)

We eliminated the pressure and performed the normal mode
analysis. From the resulting equations thez-variable is sep-
arated by taking

[
ũ3(z,t), θ̃(z,t), φ̃(z,t)

]
= [û3, θ̂, φ̂](t) sin(πz)

and after the substitutionst = t̂
√

Prcκ andω = ω̂
√

Prcκ,
we obtain a system of ordinary differential equations with
periodic coefficients:

c
r

dû3

d̂t
= −(Dam2+1)û3 +

α2

m2
(1+ η f ′′(τ))(GrT θ̂ −GrSφ̂)(12)

κ

r
d̂θ

d̂t
= û3 −

m2

Pr
θ̂ (13)

ϕ

r
dφ̂

d̂t
= û3 −

m2

S ĉ
φ (14)

whereα2 is the overall horizontal wavenumber,m2 = α2 +
π2 and r =

√
Prcκ. We assume thatf (τ) = cosωt in

Eq.(12) and for notational convenience, tilde will be sub-
sequently omitted.

Following the Floquet theory, we search for the solu-
tion to the system (12)-(14)in the form

(û3, θ̂, φ̂)(t) = eσt
+∞∑

n=−∞

(wn, θn, φn)einωt (15)

whereσ is the Floquet exponent that defines the behaviour
of the perturbation with time. Substitution of Eq.(15) into
the system (12)-(14) yields an infinite tridiagonal system
of linear algebraic equations for determination of unknown
coefficientθn :

Mnθn+qn−1θn−1+qn+1θn+1=0, n = ...,−2,−1,0,1,2, ...(16)

Here RaT = GrT · Pr is the thermal Rayleigh number,
RaS = GrS ·S cis the solutal Rayleigh number,Le= S c/Pr
is the Lewis number andL = Leϕ/κ.

Now we use the continued fraction method to solve the
above linear system. Substitutingζn = θn−1/θn, (θn , 0),
the system (16) becomes

Mn +

(
qn−1ζn +

qn+1

ζn+1

)
= 0, n = ...,−2,−1,0,1,2, ...(17)

The validity of the transition from Eqs.(16)-(17) was dis-
cussed by Strong [8] and they proved that none of the coef-
ficientsθn can become zero for a solution of a system (16).
From Eq. (17), using complex fractions, we derive two
different recurrence relations for the unknownζn which
in turn yield two different continued fractions. Assigning
n = 0 in these leads to the following dispersion equation
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for the Floquet exponentσ in the explicit form

M0 −
q0q1

M1 −
q1q2

M2 −
q2q3

M3 − · · ·

=
q0q−1

M−1 −
q−1q−2

M−2 −
q−2q−3

M−3 − · · ·

(18)

from which we can determine the values of the Floquet ex-
ponentσ.

The Eq.(18) is simplified to the real form whenσ = 0
corresponding to the synchronous mode (S) with period
2π/ω with the symmetryM−n = Mn and q−n = qn (bar
denotes the complex conjugate) as

Re


q0q1

M1 −
q1q2

M2 −
q2q3

M3 − · · ·


=

M0

2
(19)

The Eq.(18) is simplified to the real form whenσ = iω/2
corresponding to the subharmonic mode (SH) with period
4π/ω with the symmetryM−n = Mn−1 andq−n = qn−1 as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M0 −
q0q1

M1 −
q1q2

M2 −
q2q3

M3 − · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

= q2
0 (20)

The transcendental Eqs. (19) and (20) are solved then to
obtain the marginal curves ofRaT againstα for S and SH
modes respectively. Prior to that convergence of the contin-
ued fractions was verified numerically and the continued
fractions were truncated once the desired precision (10−4)
is achieved. The stability characteristics, viz., the critical
Rayleigh numberRaT,c, obtained by minimizing marginal
RaT againstα and the critical wavenumberαc, theα corre-
sponding toRaT,c are then calculated by fixing the values
of other parameters.

3 Results and discussion

The effect of time-periodically varying gravity field on the
onset of thermosolutal convection in a horizontal porous
layer is investigated. Attention is paid to the situation in
which the vibrating porous layer is both heated and so-
luted from above. We present the results for arbitrary val-
ues of amplitudeη and frequencyω. Also we fixedPr = 1,
κ = 1 andc = Da = 0.1 corresponding to Brinkman
porous medium throughout the study. The expression (16)
contains, in particular, the corresponding result of Strong
[20] for Da = 0, binary fluid case for the Darcy model and
Saravanan and Sivakumar [9] forRaS = 0, pure fluid case
for the Brinkman model.

The variation ofRaT,c andαc againstω are shown in
Figs.1 and 2, respectively, for different values ofη, RaS

and L = 10. We observed thatRaT,c → ∞ for ω → ∞
because the modulation has no effect on high frequency
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Fig. 1.RaT,c againstω for differentη, RaS andL = 10.
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Fig. 2.αc againstω for differentη, RaS andL = 10.

and it corresponds to the unmodulated problem. Forη = 5,
we observe that the solutal Rayleigh numberRaS slightly
stabilizes the system for lowerω and its effect becomes in-
significant for higherω. MoreoverRaT,c exhibits a cusp at
a lowerω which is due to the change of the underlying in-
stability mode, i.e., the onset of instability is of S type upto
thisω and of SH type beyond thisω. The correspondingαc

(Fig.2) jumps from a higher to a lower value. We now ex-
plain this transition in terms of marginal curves. The solu-
tion through the Floquet analysis revealed marginal curves
in the form of a group of loop shaped branches enclosing
the region of instability [9]. The bottommost loop was S
for very smallω and the minimum of this loop determined
the onset condition. An additional thin SH loop emerged
and developed in the low wavenumber region for an in-
crease inω and at one stage its minimum reached the level
of the already existing S loop. HenceRaT,c for both the S
and SH modes were equal (bicritical) at the transition fre-
quency with two differentαc values. For a further increase
in ω beyond this transition frequency the SH mode grew
further and became critical. We note that there is no mode
transition beyond this cusp and the SH mode is the pre-
ferred one throughout the frequency range.

From Fig.1, we see that the effect of solutal Rayleigh
numberRaS is quite different for large amplitudeη = 50.
For RaS = 1, the onset of instability is dictated solely by
the SH mode. The stability limits exhibit an interesting be-
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Fig. 3. CDL in the marginal curve with S resonant loops for dif-
ferent values ofω.
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Fig. 4. CDL in the marginal curve with S resonant loops for dif-
ferent values ofL.

haviour forRaS = 50 and 100. Unlike the low amplitude
case,RaT,c discontinuously jumps from S to SH mode at
the transition frequency [11]. This is different from the bi-
critical situation which was discussed earlier. The changes
taking place in the marginal curve in the neighbourhood of
the transition frequency deserve mentioning at this stage.
Figure 3 shows a set of closed disconnected loops (CDL)
of S type (see [11,20]) forRaS = 50 and differentω.
Although there exist multiple loops above each CDL in
the marginal curve, they are not displayed. Asω increases
from 24 to 56, the CDL shrinks and finally disappears at
the transition frequencyω = 56.4. Hence the correspond-
ing RaT,c jumps to the already existing SH loop. From
Fig.2, we see thatαc jumps from higher to lower values
for η = 5 whereas it jumps from lower to higher values for
η = 50.αc for S mode decreases and SH mode increases as
η takes higher values. Also we note that the jumps inαc are
small at low frequencies and they become large at high fre-
quencies implying that the CDL forms well below the SH
loop at low wavenumber region and determine the critical
condition for high frequencies. One important observation
is the existence of two CDLs in the marginal curve for S
mode and are displayed in Fig.4 for different values ofL.
An increase inL make the CDLs bigger. It is evident from
this figure thatL destabilizes the system for the parame-
ters under consideration. Thus in general we observe that

η favours the onset of convection for the layer heated from
above. The existence of the CDL extends the S mode to
higher frequency range.

4 Conclusion

The onset of thermovibrational convection in two compo-
nent fluid saturated porous layer is investigated using the
Brinkman model. The conditions for instability have been
obtained via a linear stability analysis and by employing
the continued fraction method with the aid of Floquet the-
ory. The study leads to the following conclusions. The so-
lutal Rayleigh number delays the onset condition. The ex-
istence of a CDL in the marginal curve for synchronous
mode of instability is predicted for moderate values of so-
lutal Rayleigh number and vibration amplitude.
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