Open Access
MATEC Web Conf.
Volume 77, 2016
2016 3rd International Conference on Mechanics and Mechatronics Research (ICMMR 2016)
Article Number 01013
Number of page(s) 5
Section Design and Study on Machinery
Published online 03 October 2016
  1. R. H. Sabersky, A. J. Acosta, E. G. Hauptmann, and E. M. Gates, Fluid Flow: A First Course in Fluid Mechanics, 4th ed., Englewood Cliffs, NJ: Prentice Hall, (1998).
  2. J.L. Hess and Smith,A.M.O., Calculation of Potential Flow about Arbitrary Three-Dimensional Bodies, Progress in Aeronautical Science, Pergamon Press, (1966).
  3. X Lv, X Wu. Trim Optimization of Ship by a Potential-Based Panel Method, Advances in Mechanical Engineering, Vol. 2013, no. 378140, pp. 528–534, Nov, (2013).
  4. T. Gourlay, EdwardD., A Havelock Source Panel Method for Near-surface Submarines, Journal of Marine Science & Application, 14: 215–224. (2015) [CrossRef]
  5. G. Luca, M. Roberto, Marine propellers performance and flow-field prediction by a free-wake panel method, Journal of Hydrodynamics, 26(5): 780–795, Apr., (2014). [CrossRef]
  6. MS. Tarafder, MT. Ali, Numerical prediction of wave-making resistance of pentamaran in unbounded water using a surface panel method, Procedia Engineering, 56(56): 287–296. (2013). [CrossRef]
  7. K. Sudhakar, GR. Shevare, Low-order panel method for internal flows, Journal of Aircraft, 28(4): 286–288, (2012). [CrossRef]
  8. J. Baltazar, D. Rijpkema, A Comparison of Panel Method and RANS Calculations for a Ducted Propeller System in Open-Water, Third International Symposium on Marine Propulsors smp’13, pp. 338–346, May. (2013).
  9. B. Takabi, H. Shokouhmand, Effects of Al2O3-Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime, International Journal of Modern Physics C, Vol. 26, No. 4, (2015). [CrossRef]
  10. B. Takabi, S. Salehi, Augmentation of the Heat Transfer Performance of a Sinusoidal Corrugated Enclosure by Employing Hybrid Nanofluid, Advances in Mechanical Engineering, Vol. 6, 147059 (2014). [CrossRef]
  11. I. Baydoun, Localisation Inverse Problem and Dirichlet-to-Neumann Operator for Absorbing Laplacian Transport, Journal of Modern Physics, 04(06): 772–779, (2013). [CrossRef]
  12. F. Mohebbi, M. Sellier. On the Kutta Condition in Potential Flow over Airfoil. Journal of Aerodynamics, (2014).
  13. S. Lawton, C. Crawford, Investigation and Optimization of Blade Tip Winglets Using an Implicit Free Wake Vortex Method, Journal of Physics: Conference Series, 524(1), (2014). [CrossRef]
  14. G. H. Cottet, PD. Koumoutsakos, Vortex Methods: Theory and Practice, Measurement Science & Technology, 12(3): 354, (2001).
  15. T. Gourlay, Shallow Flow: A Program to Model Ship Hydrodynamics in Shallow Water, Asme International Conference on Ocean, (2014).
  16. J. E. Kerwin, C S Lee. Prediction of steady and unsteady marine propeller perfomance by numerical lifting-surface theory[J]. Sname Transactions, (1978).
  17. T. Hoshino, Hydrodynamic Analysis of Propellers in Steady Flow Using a Surface Panel Method[J]. Journal of the Society of Naval Architects of Japan, 1989(166):79–92. (1989). [CrossRef]
  18. T. Hoshino, N. Nakamura. Propeller design and analysis based on numerical lifting-surface calculation[J]. Design Criteria, (1988).