Open Access
MATEC Web Conf.
Volume 74, 2016
The 3rd International Conference on Mechanical Engineering Research (ICMER 2015)
Article Number 00036
Number of page(s) 3
Published online 29 August 2016
  1. van der Hoeven, M., World Energy Outlook 2013. (2013).
  2. Jupesta, J. and A. Suwa, Sustainable Energy Policy in Japan, Post Fukushima. Int Assoc Energy Econ Fourth Quart Newsl, (2011). p. 23–26.
  3. Viswanathan, R., K. Coleman, and U. Rao, Materials for ultra-supercritical coal-fired power plant boilers. International Journal of Pressure Vessels and Piping, 2006. 83(11): p. 778–783. [CrossRef]
  4. Holcomb, G.R., et al., Ultra supercritical turbines–steam oxidation. 2004, Albany Research Center (ARC), Albany, OR.
  5. Masuyama, F., History of power plants and progress in heat resistant steels. ISIJ international, (2001). 41(6): p. 612–625. [CrossRef]
  6. Nakai, M., et al., Correlation of high-temperature steam oxidation with hydrogen dissolution in pure iron and ternary high-chromium ferritic steel. ISIJ international, (2005). 45(7): p. 1066–1072. [CrossRef]
  7. Agüero, A., et al., Oxidation under pure steam: Cr based protective oxides and coatings. Surface and Coatings Technology, (2013.) 237: p. 30–38. [CrossRef]
  8. Jacob, Y., et al., The effect of gas composition on the isothermal oxidation behaviour of PM chromium. Corrosion Science, (2002). 44(9): p. 2027–2039. [CrossRef]
  9. Yang, Z., et al., Effects of water vapor on oxidation behavior of ferritic stainless steels under solid oxide fuel cell interconnect exposure conditions. Solid State Ionics, (2005). 176(17): p. 1495–1503. [CrossRef]
  10. Ehlers, J., et al., Enhanced oxidation of the 9% Cr steel P91 in water vapour containing environments. Corrosion Science, (2006). 48(11): p. 3428–3454. [CrossRef]
  11. Bose, S., High Temperature Coatings. (2007). 1: p. 73–154.