Open Access
MATEC Web Conf.
Volume 74, 2016
The 3rd International Conference on Mechanical Engineering Research (ICMER 2015)
Article Number 00029
Number of page(s) 6
Published online 29 August 2016
  1. D. G. Luchinsky, V. Hafiychuk, V. Smelyanskiy, R. Tyson, J. L. Walker, and J. L. Miller, “High-fidelity modeling for health monitoring in honeycomb sandwich structures,” in Aerospace Conference, 2011 IEEE, (2011), pp. 1–7.
  2. Y. A. Bruno Castanié, Christophe Bouvet, Jean-Jacques Barrau, “Core crush criterion to determine the strength of sandwich composite structures subjected to compression after impact 2008 Composite Structures.pdf,” Composite Structures, pp. 243–250, (2008). [CrossRef]
  3. H. N. Wadley, “Multifunctional periodic cellular metals,” Philos Trans A Math Phys Eng Sci, vol. 364, pp. 31–68, Jan 15 (2006). [CrossRef]
  4. A. Mamalis, D. Manolakos, M. Ioannidis, P. Kostazos, and D. Papapostolou, “Axial collapse of hybrid square sandwich composite tubular components with corrugated core: numerical modelling,” Composite structures, vol. 58, pp. 571–582, (2002). [CrossRef]
  5. S. Belouettar, A. Abbadi, Z. Azari, R. Belouettar, and P. Freres, “Experimental investigation of static and fatigue behaviour of composites honeycomb materials using four point bending tests,” Composite Structures, vol. 87, pp. 265–273, (2009). [CrossRef]
  6. H. P. Konka, M. A. Wahab, and K. Lian, “On Mechanical Properties of Composite Sandwich Structures With Embedded Piezoelectric Fiber Composite Sensors,” Journal of Engineering Materials and Technology, vol. 134, p. 011010, (2012). [CrossRef]
  7. L. Librescu and T. Hause, “Recent developments in the modeling and behavior of advanced sandwich constructions: a survey,” Composite structures, vol. 48, pp. 1–17, (2000). [CrossRef]
  8. S. Heimbs, “Virtual testing of sandwich core structures using dynamic finite element simulations,” Computational Materials Science, vol. 45, pp. 205–216, (2009). [CrossRef]
  9. F. Abbassi, S. Mistou, and A. Zghal, “Failure analysis based on microvoid growth for sheet metal during uniaxial and biaxial tensile tests,” Materials & Design, vol. 49, pp. 638–646, (2013). [CrossRef]
  10. H. A. Katzman, R. M. Castaneda, and H. S. Lee, “Moisture diffusion in composite sandwich structures,” Composites Part A: Applied Science and Manufacturing, vol. 39, pp. 887–892, (2008). [CrossRef]
  11. C. C. Foo, G. B. Chai, and L. K. Seah, “Mechanical properties of Nomex material and Nomex honeycomb structure,” Composite Structures, vol. 80, pp. 588–594, (2007). [CrossRef]
  12. A. Petras and M. Sutcliffe, “Failure mode maps for honeycomb sandwich panels,” Composite Structures, vol. 44, pp. 237–252, (1999). [CrossRef]
  13. H. Zhao, I. Elnasri, and Y. Girard, “Perforation of aluminium foam core sandwich panels under impact loading—An experimental study,” International Journal of Impact Engineering, vol. 34, pp. 1246–1257, (2007). [CrossRef]
  14. M. R. M. Rejab and W. J. Cantwell, “The mechanical behaviour of corrugated-core sandwich panels,” Composites Part B: Engineering, vol. 47, pp. 267–277, (2013). [CrossRef]
  15. M. Yamashita and M. Gotoh, “Impact behavior of honeycomb structures with various cell specifications—numerical simulation and experiment,” International Journal of Impact Engineering, vol. 32, pp. 618–630, (2005). [CrossRef]
  16. L. Aktay, A. F. Johnson, and B.-H. Kröplin, “Numerical modelling of honeycomb core crush behaviour,” Engineering Fracture Mechanics, vol. 75, pp. 2616–2630, (2008). [CrossRef]
  17. A. Abbadi, Y. Koutsawa, A. Carmasol, S. Belouettar, and Z. Azari, “Experimental and numerical characterization of honeycomb sandwich composite panels,” Simulation Modelling Practice and Theory, vol. 17, pp. 1533–1547, (2009). [CrossRef]
  18. V. N. Burlayenko and T. Sadowski, “Analysis of structural performance of sandwich plates with foam-filled aluminum hexagonal honeycomb core,” Computational Materials Science, vol. 45, pp. 658–662, (2009). [CrossRef]
  19. M. Burman and D. Zenkert, “Fatigue of foam core sandwich beams—1: undamaged specimens,” International journal of fatigue, vol. 19, pp. 551–561, (1997). [CrossRef]
  20. C. Chen, A. Harte, and N. Fleck, “The plastic collapse of sandwich beams with a metallic foam core,” International Journal of Mechanical Sciences, vol. 43, pp. 1483–1506, (2001). [CrossRef]
  21. V. Crupi and R. Montanini, “Aluminium foam sandwiches collapse modes under static and dynamic three-point bending,” International Journal of Impact Engineering, vol. 34, pp. 509–521, (2007). [CrossRef]
  22. A.-M. Harte, N. Fleck, and M. Ashby, “The fatigue strength of sandwich beams with an aluminium alloy foam core,” International Journal of Fatigue, vol. 23, pp. 499–507, (2001). [CrossRef]
  23. S. Kazemahvazi, R. Ben, D. Vikram, and D. Zenkert, “Impact properties of corrugated composite sandwich cores,” in International Conference on Sandwich Structures, ICSS9, (2010).
  24. W.-S. Chang, E. Ventsel, T. Krauthammer, and J. John, “Bending behavior of corrugated-core sandwich plates,” Composite Structures, vol. 70, pp. 81–89, (2005). [CrossRef]
  25. G. Bartolozzi, M. Pierini, U. Orrenius, and N. Baldanzini, “An equivalent material formulation for sinusoidal corrugated cores of structural sandwich panels,” Composite Structures, vol. 100, pp. 173–185, (2013). [CrossRef]
  26. F. Côté, V. S. Deshpande, N. A. Fleck, and A. G. Evans, “The compressive and shear responses of corrugated and diamond lattice materials,” International Journal of Solids and Structures, vol. 43, pp. 6220–6242, (2006). [CrossRef]
  27. S. Hou, S. Zhao, L. Ren, X. Han, and Q. Li, “Crashworthiness optimization of corrugated sandwich panels,” Materials & Design, vol. 51, pp. 1071–1084, (2013). [CrossRef]
  28. N. Buannic, P. Cartraud, and T. Quesnel, “Homogenization of corrugated core sandwich panels,” Composite Structures, vol. 59, pp. 299–312, (2003). [CrossRef]
  29. Y. S. Tian and T. J. Lu, “Optimal design of compression corrugated panels,” Thin-Walled Structures, vol. 43, pp. 477–498, (2005). [CrossRef]
  30. G. Bartolozzi, N. Baldanzini, and M. Pierini, “Equivalent properties for corrugated cores of sandwich structures: A general analytical method,” Composite Structures, vol. 108, pp. 736–746, (2014). [CrossRef]
  31. C. Kılıçaslan, M. Güden, İ. K. Odacı, and A. Taşdemirci, “The impact responses and the finite element modeling of layered trapezoidal corrugated aluminum core and aluminum sheet interlayer sandwich structures,” Materials & Design, vol. 46, pp. 121–133, (2013). [CrossRef]
  32. C. Thill, J. A. Etches, I. P. Bond, K. D. Potter, P. M. Weaver, and M. R. Wisnom, “Investigation of trapezoidal corrugated aramid/epoxy laminates under large tensile displacements transverse to the corrugation direction,” Composites Part A: Applied Science and Manufacturing, vol. 41, pp. 168–176, (2010). [CrossRef]
  33. C. Kılıçaslan, M. Güden, İ. K. Odacı, and A. Taşdemirci, “Experimental and numerical studies on the quasi-static and dynamic crushing responses of multi-layer trapezoidal aluminum corrugated sandwiches,” Thin-Walled Structures, vol. 78, pp. 70–78, (2014). [CrossRef]