Open Access
MATEC Web Conf.
Volume 74, 2016
The 3rd International Conference on Mechanical Engineering Research (ICMER 2015)
Article Number 00011
Number of page(s) 6
Published online 29 August 2016
  1. Bolaji, B.O. and Z. Huan, Ozone depletion and global warming: Case for the use of natural refrigerant - a review. Renewable and Sustainable Energy Reviews, 2013. 18: p. 49–54. [CrossRef]
  2. Liao, S.M. and T.S. Zhao, An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes. International Journal of Heat and Mass Transfer, 2002. 45: p. 5025–5034. [CrossRef]
  3. Huai, X.L., S. Koyama, and T.S. Zhao, An experimental study of flow and heat transfer of supercritical carbon dioxide in multi-port channels under cooling conditions. Chemical Engineering Science, 2005. 60: p. 3337–3345. [CrossRef]
  4. Hsieh, J.C., et al., Experimental study of heat transfer for supercritical carbon dioxide with upward flow in vertical tube. International Journal of Advanced Science and Technology, 2014. 7: p. 66–71.
  5. Cao, X.L., Z.H. Rao, and S.M. Liao, Laminar convective heat transfer of supercritical CO2 in horizontal miniature circular and triangular tubes. Applied Thermal Engineering, 2011. 31: p. 2374–2384. [CrossRef]
  6. Lemmon, E.W., M.O. McLinden, and D.G. Friend. “Thermophysical Properties of Fluid Systems” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard. 2015; Available from:
  7. Pilta, S.S., E.A. Groll, and S. Ramadhyani, New correlation to predict the heat transfer coefficient during in-tube cooling of turbulent supercritical CO2. International Journal of Refrigeration, 2002. 25: p. 887–895. [CrossRef]
  8. Xu, J., et al., Turbulent convective heat transfer of CO2 in a helical tube at near-critical pressure. International Journal of Heat and Mass Transfer, 2015. 80: p. 748–758. [CrossRef]
  9. Mohseni, M. and M. Bazargan, Modification of low Reynolds number k-e turbulence models for applications in supercritical fluid flows. International Journal of Thermal Sciences, 2012. 51: p. 51–62. [CrossRef]
  10. Lisboa, P.F., et al., Computational-fluid-dynamics study of a Kenics static mixer as a heat exchanger for supercritical carbon dioxide. Journal of Supercritical Fluids, 2010. 55: p. 107–155. [CrossRef]
  11. Yadav, A.K., M.R. Gopal, and S. Bhattacharyya, Transient analysis of subcritical/supercritical carbon dioxide based natural circulation loops with end heat exchangers: Numerical studies. International Journal of Heat and Mass Transfer, 2014. 79: p. 24–33. [CrossRef]
  12. Yadav, A.K., M.R. Gopal, and S. Bhattacharyya, CFD analysis of a CO2 based natural circulation loop with end heat exchangers. Applied Thermal Engineering, 2012. 36: p. 288–295. [CrossRef]
  13. Jiang, P.X., et al., Experimental and numerical study of convection heat transfer of CO2 at super-critical pressures during cooling in small vertical tube. International Journal of Heat and Mass Transfer, 2009. 52: p. 4748–4756. [CrossRef]
  14. Cengel, Y.A. and J.M. Cimbala, Fluid Mechanics: Fundamentals and Applications. 2013, New York: McGraw-Hill.
  15. Cengel, Y.A. and A.J. Ghajar, Heat and Mass Transfer: Fundamentals and Applications. 4th Edition ed. 2011, New York: McGraw-Hill Higher Education.