Open Access
MATEC Web Conf.
Volume 74, 2016
The 3rd International Conference on Mechanical Engineering Research (ICMER 2015)
Article Number 00004
Number of page(s) 7
Published online 29 August 2016
  1. V. Aravind, Engagement characteristics of a friction pad for commercial vehicle clutch system. Sadhana, 2010. 35(5): p. 585–595. [CrossRef]
  2. N. Cappetti, M. Pisaturo, A. Senatore. Modelling the cushion spring characteristic to enhance the automated dry-clutch performance: The temperature effect. P I Mech Eng D-J Aut, 2012. 0(0): p. 1–11.
  3. P. Marklund, R. Larsson. Wet clutch under limited slip conditions - simplified testing and simulation. P I Mech Eng J-J Eng, 2007. 221(5): p. 545–551.
  4. T. Petrun, M. Kegl, J. Flašker. Development and Validation of a Friction Model for Simulation of Friction Clutch Dynamics in a Multi-Body System, in Tribology and Design II, M. Hadfield and C.A. Brebbia, Editors. 2012, WIT Press: Southampton. p. 77–88. [CrossRef]
  5. W. Huang, P.M. Samin, K.B. Tawi, B. Supriyo. Frictional dissipation and mechanical efficiency analysis of clutched train engagement. J Appl Sci & Agric, 2014. 9(18): p. 238–244.
  6. Y. Takao, T. Takeaki, G. Mitsuo. A solution method for optimal weight design problem of the gear using genetic algorithms. Comput Ind Eng, 1998. 35(3–4): p. 523–526. [CrossRef]
  7. T. Jelaska. Gears and gear drives, 2012, John Wiley & Sons: Chichester. [CrossRef]
  8. L. Chen, G. Xi, C.L. Yin. Model referenced adaptive control to compensate slip-stick transition during clutch engagement. Int J Auto Tech-Kor, 2011. 12(6): p. 913–920. [CrossRef]
  9. D. Hrovat, W. E. Tobler. Bond graph modeling of automotive power trains. J Franklin I, 1991. 328(5–6): p. 623–662. [CrossRef]
  10. A. Karl W. Björn. Adaptive control, 2013, Courier Corporation: New York.
  11. J. G. Zhang, Y.L. Lei, X. Hua, J. Wang, A. Ge. Proposed shift quality metrics and experimentation on AMT shift quality evaluation. in 3rd International Conference on Natural Computation. 2007.