Open Access
MATEC Web Conf.
Volume 69, 2016
2016 5th International Conference on Chemical and Process Engineering (ICCPE 2016)
Article Number 07001
Number of page(s) 5
Section Chemical Industry
Published online 02 August 2016
  1. SchulzH.; Short history and present trends of Fischer-Trosch synthesis, Applied Catalysis A, 186, 3–12 (1999). [CrossRef]
  2. DryM. E.; The Fischer Tropsch Process: 1950-2000, Catalysis Today, 71, 227–241 (2002). [CrossRef]
  3. TakeshitaT., YamajiK.; Important roles of Fischer-Tropsch synfuels in the global energy future, Energy Policy, 36, 2773–2784 (2008). [CrossRef]
  4. YorkA. P. E., XiaoT. C., GreenM. L. H., ClaridgeJ. B.; Methane oxyreforming for synthesis gas production, Catal. Rev. Sci. Eng., 49, 511–560 (2007). [CrossRef]
  5. SongX., GuoZ.; Technologies for direct production of flexible hydrogen/CO synthesis gas, Energy Conversion and Management, 47, 560–569 (2006). [CrossRef]
  6. Aasberg-PetersenK., ChristensenT. S., NielsenC. S., DybkjaerI.,; Recent developments in autothermal reforming and pre-reforming for synthesis gas production in GTL applications, Fuel Process. Technol., 83, 253–261 (2003). [CrossRef]
  7. PatcharavorachotY., WasuleewanM., AssabumrungratS., ArpornwichanopA.; Analysis of hydrogen production from methane autothermal reformer with a dual catalyst-bed configuration, Theor. Found. Chem. Eng., 46,658–665 (2012). [CrossRef]
  8. PadbanN.; BecherV. Clean Hydrogen-Rich Synthesis Gas;Chris Gas Report, (2005).
  9. ZhuQ.; ZhaoX.; DengY. Advances in the Partial Oxidation of Methane to Synthesis Gas. J. Nat. Gas Chem., 13, 191–203 (2004).
  10. Van HardeveldR. M.; GroeneveldM. J.; LehmanJ. Y.; BullD. C. Investigation of an Air Separation Unit Explosion. J. Loss Prev. Process Ind., 14, 167–180 (2001). [CrossRef]
  11. MaqboolW. & LeeE. S., Syngas Production Process Development and Economic Evaluation for Gas‐to‐Liquid Applications. Chemical Engineering & Technology, 37, 995–1001 (2014). [CrossRef]
  12. PinaJ., BorioD. O.; Modeling and simulation of an autothermal reformer, Latin Am. Appl. Res., 36, 289–294 (2006).
  13. XuJ., FromentG. F.; Methane steam reforming, methanation and water-as shift: I. Intrinsic kinetics, AIChE J., 35, 88–96 (1989). [CrossRef]
  14. JaubertJ. N.; Mutelet.F. VLE predictions with the Peng-Robinson equation of state and temperature dependent calculated through a group contribution method. Fluid Phase Equilibria, 224, 285–304 (2004). [CrossRef]
  15. QasimF., ShinJ. S., ChoS. J., & ParkS. J., Optimizations and heat integrations on the separation of toluene and 1-butanol azeotropic mixture by pressure swing distillation. Separation Science and Technology, 51, 316–326 (2016) [CrossRef]
  16. OmideyiT. O.; KasprzyckiJ., WatsonF. A., The economics of heat pump assisted distillation sys-tems I. A design and economic model. J Heat Recov Syst., 4, 187–200 (1984). [CrossRef]