Open Access
MATEC Web Conf.
Volume 68, 2016
2016 The 3rd International Conference on Industrial Engineering and Applications (ICIEA 2016)
Article Number 16005
Number of page(s) 4
Section Applied Mathematics
Published online 01 August 2016
  1. M. Adıvar, M. Bohner, Spectral analysis of q-difference equations with spectral singularities, Math. Comp. Model. 43 (2006), 695703.
  2. Y. Aygar, Investigation of spectral analysis of matrix quantum difference equations with spectral singularities, Hacettepe Journal of Mathematics and Statistics (2015), DOI:10.15672/HJMS.20164513107
  3. Y. Aygar, Principal vectors of second-order quantum difference equations with boundary conditions dependent on spectral parameter, Advances in Difference Equations 2015:249 (2015) DOI:10.1186/s13662-015-0587-3. [CrossRef]
  4. Y. Aygar, M. Bohner, A Polynomial-Type Jost Solution and Spectral Properties of a Self-Adjoint Quantum-Difference Operator, Complex Analysis and Operator Theory, (2015) DOI:10.1007/s11785-015-0463-x.
  5. Y. Aygar, M. BohneR, On the spectrum of eigenparameter-dependent quantum difference equations, Appl. Math.& Inf. Scie. 9 (2015), 1725–1729.
  6. M.A. Naimark, Linear differential operators. Part II: Linear differential operators in Hilbert space, Frederick Ungar Publishing Co., New York, 1968.
  7. Y. Aygar, M. Bohner, Spectral Anlaysis of a matrix-valued quantum difference operator, Dynm. Equ. Appl. (2015), In press.
  8. L.A. Lusternik, V.J. Sobolev, Elements of functional analysis, Hindustan Publishing Corp., Delhi, 1974.
  9. I.M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Israel Program for Scientific Translations, Jerusalem, (1965)