Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 06079
Number of page(s) 9
Section Chapter 6 Materials Science
Published online 29 July 2016
  1. S. R. Levine, E. J. Opila, M. C. Halbig, J. D. Kiser, M. Singh, J. A. Salem, Evaluation of ultra-high temperature ceramics for aeropropulsion use, J. Eur. Ceram. Soc. 22 (2002) 2757–2767. [CrossRef]
  2. J. Marschall, A. Chamberlain, D. Crunkleton, B. Rogers, Catalytic atom recombination on ZrB2/SiC and HfB2/SiC ultra-high temperature ceramic composites, J. Spacecraft Rockets. 41 (2004) 576–581. [CrossRef]
  3. C. Bartuli, T. Valente, M. Tului, Plasma spray deposition and high temperature characterization of ZrB2-SiC protective coatings, Surf. Coat. Technol. 155 (2002) 260–273. [CrossRef]
  4. E. W. Neuman, G. E. Hilmas, W. G. Fahrenholtz, Mechanical behavior of zirconium diboride-silicon carbide ceramics at elevated temperature in air, J. Eur. Ceram. Soc. 33 (2013) 2889–2899. [CrossRef]
  5. L. Silvestroni, D. Sciti, Oxidation of ZrB2 ceramics containing SiC as particles, whiskers, or short fibers, J. Am. Ceram. Soc. 94 (2011) 2796–2799. [CrossRef]
  6. P. Hu, X. H. Zhang, J. C. Han, X. G. Luo, S. Y. Du, Effect of various additives on the oxidation behavior of ZrB2-based ultra-high-temperature Ceramics at 1800 degrees C, J. Am. Ceram. Soc. 93 (2010) 345–349. [CrossRef]
  7. F. Peng, R. F. Speyer, Oxidation resistance of fully dense ZrB2 with SiC, TaB2, and TaSi2 Additives, J. Am. Ceram. Soc. 91 (2008) 1489–1494. [CrossRef]
  8. I. G. Talmy, J. A. Zaykoski, M. M. Opeka, High-temperature chemistry and oxidation of ZrB2 ceramics containing SiC, Si3N4, Ta5Si3, and TaSi2, J. Am. Ceram. Soc. 91 (2008) 2250–2257. [CrossRef]
  9. Y. Wang, B. Ma, L. Li, L. An, Oxidation behavior of ZrB2-SiC-TaC, J. Am. Ceram. Soc. 95 (2012) 374–378. [CrossRef]
  10. O. N. Grigoriev, B. A. Galanov, V. A. Lavrenko, A. D. Panasyuk, S. M. Ivanov, A. V. Koroteev, K. G. Nickel, Oxidation of ZrB2-SiC-ZrSi2[10] ceramics in oxygen, J. Eur. Ceram. Soc. 30 (2010) 2397–2405. [CrossRef]
  11. E. Opila, S. Levine, Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: effect of Ta additions, J. Mater. Sci. 39 (2004) 5969–5977. [CrossRef]
  12. F. Monteverde, D. Alfano, R. Savino, Effects of LaB6 addition on arc-jet convectively heated SiC-containing ZrB2–based ultra-high temperature ceramics in high enthalpy supersonic airflows, Corros. Sci. 75 (2013) 443–453. [CrossRef]
  13. J. Lin, Mcrostructure and properties of 3Y-ZrO2 fibers reinforced ultra high temperature ceramics, Harbin Institute of Technology, 2013.
  14. W. Li, X. Zhang, C. Hong, W. Han, J. Han, Microstructure and mechanical properties of zirconia-toughened ZrB2-MoSi2 composites prepared by hot pressing, Scripta Mater. 60 (2009) 100–103. [CrossRef]
  15. C. W. Li, Y. M. Lin, M. F. Wang, C. A. Wang, Preparation and mechanical properties of ZrB2–based ceramics using MoSi2 as sintering aids, Front. Mater. Sci. China. 4 (2010) 271–275. [CrossRef]
  16. D. Sciti, F. Monteverde, S. Guicciardi, G Pezzotti, A. Bellosi, Microstructure and mechanical properties of ZrB2-MoSi2 ceramic composites produced by different sintering techniques, Mater. Sci. Eng. A. 434 (2006) 303–309. [CrossRef]
  17. D. Sciti, M. Brach, A. Bellosi, Oxidation behavior of a pressless sintered ZrB2-MoSi2 ceramic composite, J. Mater. Res. 20 (2005) 922–930. [CrossRef]
  18. D. Sciti, M. Brach, A. Bellosi, Long-term oxidation behavior and mechanical strength degradation of a pressurelessly sintered ZrB2-MoSi2 ceramic, Scripta Mater. 53 (2005) 1297–1302. [CrossRef]
  19. B. E. Deal, A. S. Grove, General relationship for the thermal oxidation of silicon, J. Appl. Phys. 36 (1965) 3770–3778. [CrossRef]