Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 06034
Number of page(s) 6
Section Chapter 6 Materials Science
Published online 29 July 2016
  1. K. Padhi, K. S. Nanjundaswamy, J. B. D. Goodenough, Phospho-olivines as positive‐electrode materials for rechargeable lithium batteries, J. Electrochem. Soc. 144 (1997) 1188–1194. [CrossRef]
  2. D. Jiang, X. Zhang, S. Lu, Research on process of preparation and performance of iron phosphate as precusor of lithium iron phosphate, Rare Metals. 30 (2011) 52–54. [CrossRef]
  3. X. Liao, J. Yu, L. Gao, Electrochemical study on lithium iron phosphate/hard carbon lithium-ion batteries, J. Solid State Electr. 16 (2012) 423–428. [CrossRef]
  4. Mauger, C. Julien, Surface modifications of electrode materials for lithium-ion batteries: status and trends, Ionics. 20 (2014) 751–787. [CrossRef]
  5. J. M. Patete, M. E. Scofield, V. Volkov, et al., Ambient synthesis, characterization, and electrochemical activity of LiFePO4 nanomaterials derived from Iron phosphate intermediates, Nano Res. 8 (2015) 2573–2594. [CrossRef]
  6. M. J. Armstrong, Colm, W. O’D. J. Macklin, Evaluating the performance of nanostructured materials as lithium-ion battery electrodes, Nano Res. 7 (2014) 1–62. [CrossRef]
  7. L. Noerochim, A. O. Yurwendra, D. Susanti, Effect of carbon coating on the electrochemical performance of LiFePO4/C as cathode materials for aqueous electrolyte lithium-ion battery, Ionics. 17 (2015) 1–6.
  8. G. Sun, B. Jin, G. Sun, et al., Characteristics of lithium iron phosphate mixed with nano-sized acetylene black for rechargeable lithium-ion batteries, J. Appl. Electrochem. 41 (2011) 99–106. [CrossRef]
  9. Y. Chang, C. Peng, I. Hung, Effects of particle size and carbon coating on electrochemical properties of LiFePO4/C prepared by hydrothermal method, J. Mate. Sci. 49 (2014) 6907–6916. [CrossRef]
  10. X. Zhao R. Yu Cai, et al., Solution combustion synthesis of high-rate performance carbon-coated lithium iron phosphate from inexpensive iron (III) raw material, J. Mate. Chem. 22 (2012) 2900–2907. [CrossRef]
  11. T. F. Yi, X. Y. Li, H. Liu, et al., Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery, Ionics. 18 (2012) 529–539. [CrossRef]
  12. J Hassoun, F Bonaccorso, M. Agostini, et al., An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode, Nano Lett. 14 (2014) 4901–4906. [CrossRef]
  13. L. Damen, F. De Giorgio, S. Monaco, et al., Synthesis and characterization of carboncoated LiMnPO4 and LiMn1−xFexPO4 (x = 0.2, 0.3) materials for lithium-ion batteries, J. Power Sources. 218 (2012) 250–253. [CrossRef]
  14. M. S. Yoon, M. Islam, Y. M. Park, et al., Effect of synthesizing method on the properties of LiFePO4/C composite for rechargeable lithium-ion batteries, Electron. Mater. Lett. 9 (2013) 187–193. [CrossRef]
  15. Z. Fu, F. Yu, S. Ling, Influence of Wet Milling Process Parameters on the Zirconium Silicate Average Particle Size, Ti. Ind. Prog. 31 (2014) 41–44.
  16. P. Liu, A. Wang, L. Yan, Effect of milling time on morphology of composite powders as well as microstructure and properties of large size ratio SiC/6061Al composites, Mater. Sci. Eng. Powder Metal. 19 (2014) 523–529.