Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 06019
Number of page(s) 8
Section Chapter 6 Materials Science
Published online 29 July 2016
  1. Lu L, Shen X F, Chen X H, et al. Ultrahigh Strength and High Electrical Conductivity in Copper [J].Science, 2004, 304:422–426. [CrossRef] [PubMed]
  2. Ivanov A D, Nikolaev A K, Kalinin G M. Effect of Heat Treatments on the Properties of Cu-Cr-Zr Alloys [J]. J. Nucl. Mater., 2002, 307-311(1): 673. [CrossRef]
  3. Wang Z J, Zhong Y B, Cao G H, Wang C, Wang J, Ren W L, Lei Z S, Ren Z M. Influence of DC Electric Current on the Hardness of Thermally Aged Cu-Cr-Zr alloy[J]. Journal of Alloys and Compounds, 2009, 479: 303. [CrossRef]
  4. Batra I S, Dey G K, Kulkarni U D, Banerjee S. Precipitation in a Cu-Cr-Zr Alloy [J]. Mater. Sci. Eng. A, 2003, 356(1–2) : 32. [CrossRef]
  5. Tu J P, Qi W X, Yang Y Z, Liu F, Zhang J T, Gan G Y, Wang N Y, Zhang X B, Liu MS. Effect of Aging Treatment on the Electrical Sliding Wear Behavior of Cu-Cr-Zr Alloy [J]. Wear, 2002, 249: 1021−1027.
  6. Davis J W, Kalinin G M. Material Properties and Design Requirements for Copper Alloys Used in ITER [J]. Journal of Nuclear Materials, 1998, 258/263: 323−328. [CrossRef]
  7. Luo P, Dong S, Xie Z, et al. The effects of coating parameters on the quality of TiB2–TiC composite phase coating on the surface of Cu–Cr–Zr alloy electrode [J]. Surface and Coatings Technology, 2014, 253:132–138. [CrossRef]
  8. Akhtar F, Askari S J, Shah K A, et al. Microstructure, Mechanical Properties, Electrical Conductivity and Wear Behavior of High Volume TiC Reinforced Cu-Matrix Composites [J]. Materials Characterization, 2009, 60(4): 327–336. [CrossRef]
  9. Fu H, Zhang H, Wang H, et al. Synthesis and Mechanical Properties of Cu-Based Bulk Metallic Glass Composites Containing In-situ TiC Particles [J]. Scripta Materialia, 2005, 52(7): 669–673. [CrossRef]
  10. Guo M X, Wang M P, Shen K, et al. Synthesis of Nano TiB2 Particles in Copper Matrix by In Situ Reaction of Double-beam Melts [J]. Journal Of Alloys And Compounds, 2008, 460(1-2): 585–589. [CrossRef]
  11. Lu J, Shu S, Qiu F, et al. Compression Properties and Abrasive Wear Behavior of High Volume Fraction TiCx–TiB2/Cu Composites Fabricated by Combustion Synthesis and Hot Press Consolidation [J]. Materials & Design, 2012, 40:157–162. [CrossRef]
  12. Li M Q, Zhai H X, Huang Z Y, et al. Microstructure and Mechanical Properties of TiC0.5 Reinforced Copper Matrix Composites [J]. Mat Sci Eng a-Struct, 2013, 588:335–339. [CrossRef]
  13. Jin S B, Shen P, Zou B L, et al. Morphology Evolution of TiCx Grains During SHS in an Al-Ti-C System [J]. Cryst Growth Des, 2009, 9(2): 646–649. [CrossRef]
  14. Kaftelen H, Ünl N, Gller G, et al. Comparative Processing-Structure–Property Studies of Al–Cu Matrix Composites Reinforced with TiC Particulates [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(7): 812–824. [CrossRef]
  15. Liang Y, Han Z, Li X, et al. Study on the Reaction Mechanism of Self-propagating High-temperature Synthesis of TiC in the Cu–Ti–C System [J]. Materials Chemistry and Physics, 2012, 137(1): 200–206. [CrossRef]
  16. S.B. Sinnotta, E.C. Dickey. Ceramic/metal Interface Structures and their Relationship to Atomic and Meso-scale Properties. Materials Science and Engineering R, 2003; 43: 1–59. [CrossRef]
  17. W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, T. Sakata, H. Mori. HREM Study of TiB/Ti Interfaces in a TiB-TiC In Situ Composite. Scripta Materialia, 2001; 44: 1069–1075. [CrossRef]
  18. Zarrinfar N, Kennedy A R, Shipway P H. Reaction Synthesis of Cu–TiCx Master-alloys for the Production of Copper-based Composites [J]. Scripta Materialia, 2004, 50(7): 949–952. [CrossRef]
  19. Rathod S, Modi O P, Prasad B K, et al. Cast In Situ Cu–TiC Composites: Synthesis by SHS Route and Characterization [J]. Materials Science and Engineering: A, 2009, 502(1–2): 91–98. [CrossRef]
  20. Zhou D S, Tang J, Qiu F, et al. Effects of Nano-TiCp on the Microstructures and Tensile Properties of TiCp/Al–Cu Composites [J]. Materials Characterization, 2014, 94:80–85. [CrossRef]