Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 06014
Number of page(s) 5
Section Chapter 6 Materials Science
Published online 29 July 2016
  1. H. Sato, S. Eedo, M. Sugiyama, et al. Baddeleyite-Type High-Pressure Phase of TiO2. SCIENCE, 1990. 251–786.
  2. Y.C. Ding, B. Xiao. Anisotropic elasticity, sound velocity and thermal conductivity of TiO2 polymorphs from first principles calculations. Computational Materials Science, 2014,82, 202–218. [CrossRef]
  3. X.G. Ma, P. Liang, L. Miao, et al. Pressure-induced phase transition and elastic properties of TiO2 polymorphs. Phys. Status Solidi B, 2009,1–8.
  4. P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys Rev B,1964,136: 864–871. [CrossRef] [MathSciNet]
  5. M. D. Segall, P. J. D. Lindan, M.J. Probert, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. C 14 (2002) 2717.
  6. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77 (1996) 3865. [NASA ADS] [CrossRef] [PubMed]
  7. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 1990 (41): 7892–7895. [CrossRef]
  8. J. P. Watt, Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with monoclinic symmetry. J. Appl. Phys. 51 (1980) 1520. [CrossRef]
  9. R. Hill, The elastic behaviour of a crystalline aggregate. Proc Phys Soc, 1952, 65: 350–354. [CrossRef]
  10. S.I. Ranganathan, M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys Rev Lett, 2008,101: 055504. [CrossRef]
  11. S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag,1954,45: 823–843. [CrossRef]
  12. J.F. Nye, Physical Properties of Crystals. Oxford: Clarendon Press,1964