Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 05010
Number of page(s) 7
Section Chapter 5 Metallurgical Engineering
Published online 29 July 2016
  1. J. H.Kong, C. S.Xie. Effect of molybdenum on continuous cooling bainite transformation of low-carbon microalloyed steel, Mater Design. 27(2006)1169–1173. [CrossRef]
  2. L. Y.Lan, C. L.Qiu, D WZhao, et al. Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel, Mater. Sci. Eng. A. 529(2011)192–200. [CrossRef]
  3. C. S.Chiou, J. R.Yhng, C. Y.Huang. The effect of prior compressive deformation of austenite on toughness property in an ultra-low carbon bainitic steel, Mater Chem Phys. 69(2001)113–124. [CrossRef]
  4. Q. Y.Sun, Z. T.Yu, R. H.Zhu, et al. Mechanical behavior and deformation mechanisms of Ti–2.5Cu alloy reinforced by nano-scale precipitates at 293 and 77 K, Mater. Sci. Eng. A. 364(2004)159–165. [CrossRef]
  5. C.J.Shang, X. M.Wang, S. W.Yang, et al. Microstructure refinement of high strength low carbon bainitic steels, Acta Metall Sin. 39(2003)1019–1024.
  6. H. K.D. HBhadeshia. High performance bainitic steels, Mater Sci Forum. 500(2005)63–74. [CrossRef]
  7. H. K.D. HBhadeshia, J. W.Christian. Bainite in steels, Metall. Mater. Trans. A. 21(1990)767–797. [CrossRef]
  8. A. K.De, K. D.Blauwe, S.Vandeputte, et al. Effect of dislocation density on the low temperature aging behavior of an ultra low carbon bake hardening steel, J. Alloy. Compd. 310(2000)405–410. [CrossRef]
  9. X. M.Wang, X. L.He, S. W.Yang, et al. Refining of intermediate transformation microstructure by relaxation processing, Tetsu To Hagane. 88(2002)1553–1559.
  10. H.K.D. HBhedeshia. Nanostructured Bainite, P Roy Soc Lond A Mat. 466 (2009) 3–18.