Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 03020
Number of page(s) 6
Section Chapter 3 Information Technology
Published online 29 July 2016
  1. Ayhan A.O. Three-dimensional fracture analysis using tetrahedral enriched elements and fully unstructured mesh[J]. International Journal of Solids and Structures, 2011, 48(3/4):492–505. [CrossRef]
  2. F. Rabold, Kuna M. Automated Finite Element Simulation of Fatigue Crack Growth in Three-dimensional Structures with the Software System ProCrack[J]. Procedia Materials Science, 2014, 3:1099–1104. [CrossRef]
  3. Yang Qingsheng, Wei Yang. Finite element simulation of fracture process[J]. Chinese Journal of Computational Mechanics, 1997, 04:33–38.
  4. Jia Jianjun, Peng Yinghong, Xueyu Ruan. A grid technology of crack propagation simulation based on FEM[J]. Die and Mould Technology, 2001, 05:4–6.
  5. R. Moslemian, A.M. Karlsson, Berggreen C. Accelerated fatigue crack growth simulation in a bimaterial interface[J]. International Journal of Fatigue, 2011, 3312:1526–1532. [CrossRef]
  6. P. Beaurepaire, Schuëller G.I. Modeling of the variability of fatigue crack growth using cohesive zone elements[J]. Engineering Fracture Mechanics, 2011, 7812:2399–2413. [CrossRef]
  7. Su Shaopu, Dong Dengke, Haiying Zhang. Fatigue Crack Growth Analysis Based on Abaqus /Python [J]. Science Technology and Engineering, 2015, 27:193–198.
  8. Chen Guohua, Lingjie Chen. Solution-dependent Path Crack Propagation Simulation and Its Application[J]. Pressure Vessel Technology, 2012, 10:36–40.
  9. B.R. Davis, P.A. Wawrzynek, C.G. Hwang, Ingraffea A.R. Decomposition of 3-D mixed-mode energy release rates using the virtual crack extension method[J]. Engineering Fracture Mechanics, 2014,:382–405. [CrossRef]
  10. Fan Chengye, P.-Y. Ben Jar, J.J. Roger Cheng. Prediction of energy release rates for crack growth using FEM-based energy derivative technique[J]. Engineering Fracture Mechanics, 2006, 748:1243–1254.