Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 02022
Number of page(s) 7
Section Chapter 2 Electronic Technology
Published online 29 July 2016
  1. G. Huang, Y. Zhu, Synthesis and photocatalytic performance of ZnWO4 catalyst, Mater. Sci. Eng. B 139 (2007) 201–208. [CrossRef]
  2. G. Huang, C. Zhang, Y. Zhu, ZnWO4 photocatalyst with high activity for degradation of organic contaminants, J. Alloys Compd. 432 (2007) 269–276. [CrossRef]
  3. F. Yang, C. Tu, H. Wang, Y. Wei, Z. You, G. Jia, J. Li, Z. Zhu, X. Lu, Y. Wang, Growth and spectroscopy of Dy3+ doped in ZnWO4 crystal, Opt. Mater. 29 (2007) 1861–1865. [CrossRef]
  4. J. Lin, J. Lin, Y. Zhu, Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance, Inorg. Chem. 46 (2007) 8372–8378. [CrossRef]
  5. L. Zhang, Z. Wang, L. Wang, Y. Xing, Y. Zhang, Preparation of ZnWO4/grapheme composites and its electrochemical properties for lithium-ion batteries, Mater. Lett. 108 (2013) 9–12. [CrossRef]
  6. M. Qamar, A. Khan, Mesoporous hierarchical bismuth tungstate as a highly efficient visible-light-driven photocatalyst. RSC Adv. 4 (2014) 9542–9550. [CrossRef]
  7. F. Chambon, F. Ratabou, C. Pinel, A. Cabiac, E. Guillon and N. Essayem, Cellulose Conversion with Tungstated-Alumina-Based Catalysts: Influence of the Presence of Platinum and Mechanistic Studies, ChemSusChem 6(2013) 500–507 [CrossRef]
  8. L.I. Kuznetsova, A. V. Kazbanova, P. N. Kuznetsov, Textural properties and crystalline structure of tungstated zirconia, a catalyst for isomerization of lower alkanes, Pet. Chem. 52 (2012) 341–345. [CrossRef]
  9. E.V. Timofeeva, M.I. Borzenko, G.A. Tsirlina, E.A. Astaf’ev, O.A. Petrii, Mutual indirect probing of platinized platinum/tungstate nanostructural features, J. Solid State Electrochem. 8 (2004) 778–785 [CrossRef]
  10. A.A. Kaminskii, H.J. Eichler, K. Ueda, N.V. Klassen, B.S. Redkin, L.E. Li, J. Findeisen, D. Jaque, J. García-Sole, J. Fernández, R. Balda, Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals, Appl. Opt. 38 (1999) 4533–4547. [CrossRef]
  11. X.X. Luo, W.H. Cao, Upconversion luminescence properties of Li+ -doped ZnWO4:Yb, Er, J. Mater. Res. 23, (2008) 2078–2083 [CrossRef]
  12. C.A. Bates, M.J. Oglesbyss, K.J. Standley. The properties of Co2+ in zinc tungstate. I. The EPR spectrum and its interpretation, J. Phys. C: Solid State Phys. 5 (1972) 2949–2960. [CrossRef]
  13. P. F. Schofield, K. S. Knight, G. Cressey, Neutron powder diffraction study of the scintillator material ZnWO4, J. Mater. Sci. Lett. 31 (1996) 2873–2877. [CrossRef]
  14. S.Y. Wu, H.N. Dong, EPR Investigation of the Structure of a Rhombic Co2+ Center in an NaF Crystal, Z. Naturforsch. 58a (2003) 285–289.
  15. M. L. Du, C. Rudowicz, Gyromagnetic factors and zero-field splitting of t23 terms of Cr3++ clusters with trigonal symmetry: Al2O3, CsMgCl3, and CsMgBr3, Phys. Rev. B 46 (1992) 8974–8976. [CrossRef]
  16. H.M. Zhang, S.Y. Wu, P. Xu, L.L. Li, Theoretical studies of the local structures and EPR parameters for various Rh2+ centers in AgCl, J. Mol. Struct. Theochem. 953 (2010) 157–162. [CrossRef]
  17. A . Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Dover, New York, 1986.
  18. D. J. Newman, B. Ng, The superposition model of crystal fields, Rep. Prog. Phys. 52 (1989) 699–762. [CrossRef]
  19. C. Rudowicz, Z. Y. Yang, Y. Y. Yeung, J. Qin, Crystal field and microscopic spin Hamiltonians approach including spin–spin and spin–other-orbit interactions for d2+ and d8 ions at low symmetry C3 symmetry sites: V3+ in Al2O3, J. Phys. Chem. Solids 64 (2003) 1419–1428. [CrossRef]
  20. M. Açikgöz, P. Gnutek, C. Rudowicz, Modeling zero-field splitting parameters for dopant Mn2+ and Fe3+ ions in anatase TiO2 crystal using superposition model analysis, Chem. Phys. Lett. 524 (2012) 49–55. [CrossRef]
  21. H. N. Dong, X. S. Liu, Investigations on the local structure and EPR parameters for the trigonal Nd3+ centre in CdS, Mol. Phys. 113 (2015) 492–496. [CrossRef]
  22. E. Clementi and D. L. Raimondi, Atomic screening constants from SCF functions, J. Chem. Phys. 38 (1963) 2686–2689. [CrossRef]
  23. E. Clementi, D. L. Raimondi and W. P. Reinhardt, Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons, J. Chem. Phys. 47 (1967) 1300–1307. [CrossRef]
  24. W. Low, Paramagnetic and optical spectra of divalent cobalt in cubic crystalline fields, Phys. Rev. 109 (1958) 256?265. [CrossRef]
  25. J. S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, London, 1964.
  26. B. R. McGarvey, The isotropic hyperfine interaction, J. Phys. Chem. 71 (1967) 51–66. [CrossRef]
  27. E. K. Hodgson, I. Fridovich, Reversal of the superoxide dismutase reaction, Biochem. Biophys. Res. Commun. 54 (1973) 270–274. [CrossRef] [PubMed]
  28. A. Abragam, M. H. I. Pryce, The theory of paramagnetic resonance in hydrated cobalt salts, Prog. Roy. Soc. (London) A 206 (1951) 173–191. [CrossRef]
  29. M. Tinkham, Paramagnetic Resonance in Dilute Iron Group Fluorides. II. Wave Functions of the Magnetic Electrons, Proc. Roy. Soc. (London) A 236 (1956) 549–563. [CrossRef]
  30. Van L. Robbroeck, E. Goovaerts, D. Schoemaker, Electron spin resonance study of Co2+ and Ni+ centers in AgCl (Cu, Co, Ni), Phys. Status Solidi B 132 (1985) 179–187. [CrossRef]