Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 02011
Number of page(s) 8
Section Chapter 2 Electronic Technology
Published online 29 July 2016
  1. J. R. Swedlow, I. Goldberg, E. Brauner, P. K. Sorger, Informatics and quantitative analysis in biological imaging, Science. 300 (2003) 100–102. [CrossRef]
  2. C. Zhu, L. Liu, Q. Yang, F. Lv, S. Wang, Water-soluble conjugated polymers for imaging, diagnosis, and therapy, Chem. Rev. 112 (2012) 4687–4735. [CrossRef]
  3. K. Li, B. Liu, Polymer encapsulated conjugated polymer nanoparticles for fluorescence bioimaging, J. Mater. Chem. 22 (2012) 1257–1264. [CrossRef]
  4. R. M. Hoffman, The multiple uses of fluorescent proteins to visualize cancer in vivo, Nat. Rev. Cancer. 5 (2005) 796–806. [CrossRef]
  5. N. M. Idris, Z. Q. Li, L. Ye, et al. Stem sell tracking with optically active nanoparticles, Biomaterials. 30 (2009) 5104–5113. [CrossRef]
  6. J. H. Kim, Y. S. Kim, K. Park, et al, Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice, J. Controlled Release. 127 (2008) 41–49. [CrossRef]
  7. K. Yang, S. Zhang, G. X. Zhong, et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy, Nano Lett. 10 (2010) 3318–3323. [CrossRef]
  8. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nat. Biotechnol. 21 (2003) 47–51. [CrossRef]
  9. J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London, 1970.
  10. S. A. Jenekhe, J. A. Osaheni, Excimers and exciplexes of conjugated polymers, Science. 265 (1994) 765–768. [CrossRef] [PubMed]
  11. Y. N. Hong, J. W. Y. Lam, B. Z. Tang, Aggregation-induced emission, Chem. Soc. Rev. 40 (2011) 5361–5388. [CrossRef]
  12. Y. Yu, C. Feng, Y. Hong, et al. Cytophilic fluorescent bioprobes for long-term cell tracking, Adv. Mater. 23 (2011) 3298–3302. [CrossRef]
  13. Y. Liu, C. M. Deng, L. Tang, et al. Specific detection of d-glucose by tetraphenylethene-based fluorescent sensor, J. Am. Chem. Soc. 133 (2011) 660–663. [CrossRef]
  14. M. Li, Y. N. Hong, Z. K. Wang, et al. Fabrication of chitosan nanoparticles with aggregation-induced emission characteristics and their applications in long-term live cell imaging, Macromol. Rapid Commun. 34 (2013) 767–771. [CrossRef]
  15. T. Sanji, K. Shiraishi, M. Nakamura, M. Tanaka, Fluorescence turn-on sensing of lectins with mannose-substituted tetraphenylethenes based on aggregation-induced emission, J. Chem. Asian. 5 (2010) 817–824. [CrossRef]
  16. G. X. Feng, C. Y. Tay, Q. X. Chui, et al. Ultrabright organic dots with aggregation-induced emission characteristics for cell tracking, Biomaterials. 35 (2014) 8669–8677 [CrossRef]
  17. M. C. Woodle, Controlling liposome blood clearance by surfance grafted polymers, Adv. Drug Delivery Rev. 32 (1998) 139–152. [CrossRef]
  18. J. M. Harris, S. Zaplisky, Poly(ethylene glycol): chemistry and biomedical applications, American Chemical Society, Washington DC, 1997. [CrossRef]
  19. B. X. Gao, H. X. Li, H. M. Liu, et al. Water-soluble and fluorescent dendritic perylene bisimides for live-cell imaging, Chem. Commun. 47 (2011) 3894–3896. [CrossRef]
  20. H. M. Liu, Y. L. Wang, C. H. Liu, et al. Fluorescent water-soluble probes based on dendritic PEG substituted perylene bisimides: synthesis, photophysical properties, and live cell images, J. Mater. Chem. 22 (2012) 6176–6181. [CrossRef]
  21. L. B. Bai, W. Li, J. T. Chen, et al. Water-soluble fluorescent probes based on dendronized polyfluorenes for cell imaging, Macromolecular. Rapid Commun. 34 (2013) 539–547. [CrossRef]
  22. Li. K. Kai, W. Qin, D. Ding, et al. Polycationic adamantane-based dendrons of different generations display high cellular uptake without triggering cytotoxicity, J. Am. Chem. Soc. 136 (2014) 810–819. [CrossRef]
  23. T. Ishiyama, Y. Itoh, T. Kitano, N. Miyaura, Synthesis of arylboronates via the palladium(0)-catalyzed cross-coupling reaction of tetra(alkoxo)diborons with aryl triflates, Tetrahedron Lett. 38 (1997) 3447–3450. [CrossRef]
  24. Tean-d’ Amour K. Twibanire and T. Bruce Grindley, Efficient and controllably selective preparation of esters using uronium-based coupling agents, Organic letters. 13 (2011) 2988–2911. [CrossRef]
  25. J. W. Barr, T. W. Bell, V. J. Catalano, et al. Syntheses, structures, and photoisomerization of (E)- and (Z)-2-tert-butyl-9-(2,2,2-triphenylethylidene)fluorene, J. Phys. Chem. A. 109 (2005) 11650–11654. [CrossRef]
  26. Q. Zhao, et al. Tetraphenylethenyl-modified perylene bisimide: aggregation-induced red emission, electrochemical property and ordered microstructures, J. Mater. Chem. 22 (2012) 7387–7394. [CrossRef]
  27. Q. Peng, Y. Yi, Z. Shuai, J. Shao, Toward quantitative prediction of molecular fuorescence quantum efficiency: role of duschinsky rotation, J. Am. Chem. Soc. 129 (2007) 9333–9339. [CrossRef]
  28. X. W. Long, Zh. H. Zhang, Sh. C. Han, et al. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity, ACS Appl. Master. interfaces. 7 (2015) 7542–7551. [CrossRef]
  29. J. M. Harris and R. B. Chess, Effect of pegylation on pharmaceutical, Nat. Rev. Drug Discovery. 2 (2003) 214–221. [CrossRef]
  30. H. Huang, B. Yu, P. Zhang, et al. Highly charged ruthenium(II) polypyridyl complexes as lysosome-localized photosensitizers for two-photon photodynamic therapy, Angew. Chem. Int. Ed. 127 (2015) 14255–14258. [CrossRef]