Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 02009
Number of page(s) 8
Section Chapter 2 Electronic Technology
Published online 29 July 2016
  1. M. Guo, P. Diao, S. Cai, Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties, Appl. Surf. Sci. 249 (2005) 71–75. [CrossRef]
  2. W.J. Lee, A. Suzuki, K. Imeda, H. Okada, A. Wakahara, A. Yoshida, Fabrication and Characterization of Eosin-Y-Sensitized ZnO Solar Cell, Jpn. J. Appl. Phys. 143 (2004) 152–155. [CrossRef]
  3. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-Temperature Ultraviolet Nanowire Nanolasers, Science 292 (2001) 1897–1899. [CrossRef] [PubMed]
  4. B. Pal, M. Sharon, Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol–gel processMater. Chem. Phys. 76 (2002) 82–87.
  5. X.D. Bai, E.G. Wang, P.X. Gao, Z.L. Wang, Measuring the work function at a nanobelt tip and at a nanoparticle surface, Nano Lett. 3 (2003) 1147–1150. [CrossRef]
  6. J. Johnson, H. Yan, P. Yang, R. Saykally, Optical cavity effects in ZnO nanowire Lasers and Waveguides, J. Phys. Chem. B 107 (2003) 8816–8828. [CrossRef]
  7. S. Sreekantan, L. R. Gee, Z. Lockman, Room temperature anodic deposition and shape control of one-dimensional nanostructured zinc oxide. J. Alloys Compd. 476(2009) 513−518. [CrossRef]
  8. L.T. Canham, Silicon quantum wire array fabricated by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57 (1990) 1046–1048. [CrossRef]
  9. O. Jessensky, F. Muller, U. Gosele, Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett. 72 (1998) 1173–1175. [CrossRef]
  10. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res. 16 (2001) 3331–3334. [CrossRef]
  11. J. M. Macak, H. Tsuchiya and P. Schmuki, High-aspect-ratio TiO2 nanotubes by anodization of titanium, Angew. Chem. Int. Ed. 44 (2005) 2100–2102. [CrossRef]
  12. H. Tsuchiya, J.M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, P. Schmuki, Self-organized porous WO3 formed in NaF electrolytes, Electrochem. Commun. 7 (2005) 295–298. [CrossRef]
  13. H. Tsuchiya, P. Schmuki, Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization, Electrochem. Commun. 7 (2005) 49–52. [CrossRef]
  14. I. Sieber, H. Hildebrand, A. Friedrich, P. Schmuki, Formation of self-organized niobium porous oxide on niobium, Electrochem. Commun. 7 (2005) 97–100. [CrossRef]
  15. S.J. Kim, J. Lee, J. Choi, Understanding of anodization of zinc in an electrolyte containing fluoride ions, J. Electrochim. Acta. 53(2008) 7941–7945. [CrossRef]
  16. S.J. Kim, J. Choi, Self-assembled arrays of ZnO stripes by anodization, Electrochem. Commun. 10 (2008) 175–179. [CrossRef]
  17. S.S. Chang, S.O. Yoon, H.J. Park, A. Sakai, Appl. Surf. Sci. Luminescence properties of anodically etched porous Zn, 158 (2000) 330–334.
  18. M. Izaki, Preparation of transparent and conductive zinc oxide films by optimization of the two-step electrolysis technique, J. Electrochem. Soc. 146(1999) 4517–4521. [CrossRef]
  19. C.Y. Kuan, J.M. Chou, I.C. Leu, M.H. Hon, Formation and field emission property of single-crystalline Zn microtip arrays by anodization, Electrochem. Commun. 9 (2007) 2093–2097. [CrossRef]
  20. C.A. Grimes, G.K. Mor, Fabrication of TiO2 nanotube arrays by electrochemical anodization: four synthesis generations, in: TiO2 Nanotube Arrays, Springer, 2009, pp. 1–66.
  21. C. Wang, J. Li, L. Xu, Reduction of CO2 aqueous solution by using photosensitized-TiO2 nanotube catalysts modified by supramolecular metalloporphyrins-ruthenium(II) polypyridyl complexes. J. Mol. Catal. A-Chem. 363 (2012) 108–114. [CrossRef]
  22. M. Reli, K. Kamila, M. Vlastimil, K. Pavel, O. Lucie, Effect of calcinations temperature and calcination time on the kaolinite/TiO2 composite forphotocatalytic reduction of CO2, GeoSci. Eng, 58 (2012) 10–22.
  23. K. Satoshi, K. Hidekazu, O. Kiyohisa, M. Takayuki, S. Akira, Photocatalytic reduction of CO2 using TiO2 powders in liquid CO2 medium, J. Photochem. Photobiol. A 109 (1997) 59–63. [CrossRef]
  24. C.J. Wang, R.L. Thompson, J. Baltrus, C. Matranga, Visiblelight photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts, J. Phys. Chem. Lett. 1 (2010) 48–53. [CrossRef]