Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 02007
Number of page(s) 7
Section Chapter 2 Electronic Technology
Published online 29 July 2016
  1. B. O’regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737–740. [CrossRef]
  2. A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W. G. Diau, C. Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency, Science 334 (2011) 629–634. [CrossRef] [PubMed]
  3. M. Law, L. Greene, J. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells, Nat. Mater. 4 (2005) 455–459. [CrossRef] [PubMed]
  4. S. B. Zhu, W. Wei, X. N. Chen, M. Jiang, Z. W. Zhou, Hybrid structure of polyaniline/ZnO nanograss and its application in dye-sensitized solar cell with performance improvement, J. Solid State Chem. 190 (2012) 174–179. [CrossRef]
  5. A. Martinson, J. Elam, J. Hupp, M. Pellin, ZnO nanotube based dye-sensitized solar cells, Nano Lett. 7 (2007) 2183–2187. [CrossRef] [PubMed]
  6. L. Y. Lin, M. H. Yeh, C. P. Lee, C. Y. Chou, R. Vittal, K. C. Ho, Enhanced performance of a flexible dye-sensitized solar cell with a composite semiconductor film of ZnO nanorods and ZnO nanoparticles, Electrochim. Acta 62 (2012) 341–347. [CrossRef]
  7. H. W. Chen, C. Y. Lin, Y. H. Lai, J. G. Chen, C. C. Wang, C. W. Hu, C. Y. Hsu, R. Vittal, K. C. Ho, Electrophoretic deposition of ZnO film and its compression for a plastic based flexible dye-sensitized solar cell, J. Power Sources 196 (2011) 4859–4864. [CrossRef]
  8. H. Dai, Y. Zhou, Q. Liu, Z. D. Li, C. X. Bao, T. Yu, Z. G. Zhou, Controllable growth of dendritic ZnO nanowire arrays on a stainless steel mesh towards the fabrication of large area, flexible dye-sensitized solar cells. Nanoscale 4 (2012) 5454–5460. [CrossRef]
  9. H. Tada, M. Kubo, Y. Inubushic, S. Itob, N=N bond cleavage of azobenzene through Pt/TiO2 photocatalytic reduction Chem. Commun. (2000) 977–978.
  10. Z. Liu, X. Zhang, S. Nishimoto, M. Jin, D. A. Tryk, T. Murakami, A. Fujishima, Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J. Phys. Chem. C 112(2008) 253–259. [CrossRef]
  11. X. L. Xu, X. Duan, Z.G. Yi, Z.W. Zhou, X.M. Fan, Y. Wang, Photocatalytic production of superoxide ion in the aqueous suspensions of two kinds of ZnO under simulated solar light. Catal. Comm. 12 (2010) 169–172. [CrossRef]
  12. S. B. Zhu, X. N. Chen, F. B. Zuo, M. Jiang, Z. W. Zhou, D. Hui, Controllable synthesis of ZnO nanograss with different morphologies and enhanced performance in dye-sensitized solar cells, J. Solid State Chem. 197 (2013) 69–74. [CrossRef]
  13. S. B. Zhu, L. M. Shan, X. N. Chen, L. He, J. J. Chen, M. Jiang, X. L. Xie, Z. W. Zhou, Hierarchical ZnO architectures consisting of nanorod and nanosheet via a solution route for photovoltaic enhancement in dye-sensitized solar cells, RSC Adv. 3 (2013) 2910–2916. [CrossRef]
  14. S. B. Zhu, L. M. Shan, X. Tian, X. Y. Zheng, D. Sun, X. B. Liu, L. Wang, Z. W. Zhou, Hydrothermal synthesis of oriented ZnO nanorod-nanosheets hierarchical architecture on zinc foil as flexible photoanodes for dye-sensitized solar cells, Ceram. Int. 40 (2014) 11663–11670.
  15. B. Weintraub, Z. Zhou, Y. Li, Y. Deng, Solution synthesis of one-dimensional ZnO nanomaterials and their applications. Nanoscale 2 (2010) 1573–1587. [CrossRef] [PubMed]
  16. J. A. Parkinson, H. Sun, New approach to the solution chemistry of bismuth citrate antiulcer complexes. Chem. Commun. (1998) 881–882. [CrossRef]