Open Access
MATEC Web of Conferences
Volume 65, 2016
2016 The International Conference on Nanomaterial, Semiconductor and Composite Materials (ICNSCM 2016)
Article Number 02002
Number of page(s) 4
Section Nanomaterial, Carbon material Synthesis and Properties
Published online 06 July 2016
  1. Wilson R. R., Radiological use of fast protons, Radiology, 47, pp. 487–491, (1946) [CrossRef] [PubMed]
  2. Geissel H. & Scheidenberger C., Slowing down of relativistic heavy ions and new applications, Nucl. Instrum. Meth. B, 114, pp. 136–138, (1998)
  3. Schimmerling W., Vosburgh K. & Todd P., Interaction of 3.9-Gev nitrogen ions with matter, Science, 174, pp. 1123–1125, (1971) [CrossRef]
  4. Schimmerling W., Miller J., Wong M., et al., The fragmentation of 670A MeV neon-20 as a function of depth in water, Radiat. Res., 120, pp. 36–71, (1989) [CrossRef]
  5. Xu S., Tay B. K., Tan H. S., et al., Properties of carbon ion deposited tetrahedral amorphous carbon films as a function of ion energy, J. Appl. Phys., 79, pp. 7234–7239, (1996) [CrossRef]
  6. Schardt D., Schall I., Geissel H., et al., Charge-changing nuclear reactions of relativistic light-ion beams (5 ≤ Z ≤ 10) passing through thick absorbers. Nucl. Instrum. Meth. B, 117, pp. 221-234, (1996) [CrossRef]
  7. Amaldi U., Cancer therapy with particle accelerators, Nucl. Phys. A, 654, pp. C375–C399, (1999) [CrossRef]
  8. Kraft G., Tumor therapy with heavy charged particles, Prog. Part. Nucl. Phys., 45, pp. S473–S544, (2000) [CrossRef]
  9. Matsufuji N., Fukumura A., Komori M., et al., Influence of fragment reaction of relativistic heavy charged particles on heavy-ion radiotherapy, Phys. Med. Biol., 48, pp. 1605–1623, (2003) [CrossRef] [PubMed]
  10. Hollmark M., Gudowska I., Belkić Dž., et al., An analytical model for light ion pencil beam dose distributions: multiple scattering of primary and secondary ions, Phys. Med. Biol., 53, pp. 3477–3491, (2008) [CrossRef]
  11. Tsujii H., Mizoe J., Kamada T., et al. Overview of clinical experiences on carbon ion radiotherapy at NIRS, Radiother. Oncol., 73, pp. S41-S49, (2004) [CrossRef]
  12. Schulz-Ertner D., Nikoghosyan A., Thilmann C., et al., Results of carbon ion radiotherapy in 152 patients, Int. J. Radiat. Oncol. Biol. Phys., 58,pp. 631-640, (2004) [CrossRef]
  13. Schardt D., Schall I., Geissel H., et al., Nuclear fragmentation of highenergy heavy-ion beams in water, Adv. Space Res., 17, pp. 87–94, (1996) [CrossRef]
  14. Bian B. A., Zhang F. S. & Zhou H. Y., Fragmentation cross sections of 20Ne collisions with different targets at 600 MeV/nucleon, Nucl. Phys. A, 807, pp. 71–78, (2008) [CrossRef]
  15. Zhao Q., Zhang F. S., Wang Z. P., et al., Secondary Beam Fragments Produced by 200 and 400 MeV/u12C6+ Ions in Water, Chin. Phys. Lett., 26, pp. 092501, (2009) [CrossRef]
  16. Durante M. & Cucinotta F. A., Heavy ion carcinogenesis and human space exploration, Nature, 8, pp. 465–472, (2008)
  17. Agostinelli S., Allison J., Amako K., et al., Geant4-a simulation toolkit, Nucl. Instrum. Meth. A, 506, pp. 250–303, (2003) [NASA ADS] [CrossRef]
  18. Scholz M., Kellerer A. M., Kraft-Weyrather W., et al., Computation of cell survival in heavy ion beams for therapy, Radiat. Environ. Biophys., 36, pp. 59–66, (1997) [CrossRef] [PubMed]
  19. Krämer M., Jäkel O., Haberer T., et al., Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization, Phys. Med. Biol., 45, pp. 3299–3317, (2000) [CrossRef] [PubMed]
  20. Cuttone G., Cirrone G. Rosa A. P. Di. F., et al., Proton therapy detector studies under the experience gained at the CATANA facility, Nucl. Phys. B, 172, pp. 79–83, (2007) [CrossRef]