Open Access
MATEC Web Conf.
Volume 63, 2016
2016 International Conference on Mechatronics, Manufacturing and Materials Engineering (MMME 2016)
Article Number 04006
Number of page(s) 4
Section Information Technology, Control and Application
Published online 12 July 2016
  1. M. Turk, A.P. Pentland, Eigenfaces for recognition, J. Cognitive Neurosci.3 (1) (1991)71–86. [CrossRef]
  2. P.N. Belhumeur, J. Hespanha, D.J. Kriegman, Eigenfaces vs. Fisherfaces: recognition using class specific linear projection, IEEE Trans. Pattern Anal. Mach. Intel. 20 (7) (1997) 711–720. [CrossRef]
  3. M. S. Bartlett, J. R. Movellan, T.J. Sejnowski, Face recognition by independent component analysis, IEEE Transactions on Neural Networks.13 (6)(2002) 1450–1464. [CrossRef]
  4. L. Wiskott, J.M. Fellows, N. Kruger, C.V. Makburg, Face recognition by elastic bunch graph matching, IEEE Trans. Pattern Anal.Mach. Intell.19 (1997) 775–779. [CrossRef]
  5. G. Guo, S.Z. Li, K.L. Chan, Support vector machines for face recognition, Image and Vision Computing. 19 (9-10) (2001) 631–638. [CrossRef]
  6. J.B. Tenenbaum, V. de Silva, J.C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science. 290 (5500) (2000) 2319–2323. [CrossRef] [PubMed]
  7. S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science. 290 (5500) (2000) 2323–2326 [CrossRef] [PubMed]
  8. L.K. Saul, S.T. Roweis, Think globally, fit locally: unsupervised learning of low dimensional manifolds, J.Mach. Learning. Res. (4) (2003) 119–155.
  9. M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, in: T.G. Dietterich, S. Becker, Z. Ghahramani(Eds.), Advances in Neural Information Processing Systems, vol. 14, MIT Press, Cambridge, MA, USA, 2002, 585–591.
  10. M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput.15 (6) (2003)1373–1396. [CrossRef]
  11. X. He, S. Yan, Hu, P. Niyogi, H. Zhang, Face recognition using Laplacianfaces, IEEE Trans. Pattern Anal. Mach. Intell. 27 (3) (2005) 328–340. [CrossRef]
  12. C.H. Liu, Nonsymmetric entropy and maximum nonsymmetric entropy principle, Chaos, Solitons & Fractals. 40 (5) (2009) 2469–2474 [CrossRef]
  13. C.E. Shannon, Bell Syst. Tech. J. 27 (1948) 379–623. [CrossRef] [MathSciNet]
  14. Z Szwast, S Sieniutycz, JS. Shiner Complexity principle of extremality in evolution of living organisms by information-theoretic entropy. Chaos, Solitons & Fractals.13 (9) (2002) 1871–1888. [CrossRef]
  15. P Allegrini, P Grigolini, L. Palatella Intermittency and scale-free networks: A dynamical model for human language complexity. Chaos, Solitons & Fractals. 20 (1) (2004) 95–105. [CrossRef]
  16. V. Gontar Entropy principle of extremality as a driving force in the discrete dynamics of complex and living systems. Chaos, Solitons & Fractals.11 (1–3) (2000) 231–236. [CrossRef]
  17. MS. El Naschie Dimensions and Cantor spectra. Chaos, Solitons & Fractals.4 (11) (1994) 2121–2132. [CrossRef]
  18. MS. El Naschie On the topological ground state of E-infinity spacetime and the super string connection. Chaos, Solitons &Fractals.32 (2) (2007) 468–70. [CrossRef]
  19. MS. El Naschie Superstrings, entropy and the elementary particles content of the standard model. Chaos, Solitons & Fractals.29 (1) (2006) 48–54 [CrossRef]
  20. MS. El Naschie Internal Cantor distance and entropy of multidimensional Peano–Hilbert spaces. Chaos, Solitons & Fractals. 1993; 3:361–8. [CrossRef]
  21. C. Tsallis Possible generalization of Boltzmann–Gibbs statistics. J Stat Phys.52 (1–2) (1988) 479–487. [NASA ADS] [CrossRef] [MathSciNet]
  22. D.J.C. MacKay, Information Theory, Inference and Learning Algorithms. Cambridge, U.K. Cambridge Univ.Press,2003
  23. Guang Deng, An Entropy Interpretation of the Logarithmic Image Processing Model With Application to Contrast Enhancement, IEEE Transactions on Image Process.18 (5) (2009) 1135–1140. [CrossRef]