Open Access
MATEC Web of Conferences
Volume 61, 2016
The International Seminar on Applied Physics, Optoelectronics and Photonics (APOP 2016)
Article Number 02012
Number of page(s) 4
Section Chapter 2 Electronic Technology and Electrical Engineering
Published online 28 June 2016
  1. M Turk, A Pentland. Eigenfaces for recognition, Journal of Cognitive Neuroscience. 3 (1) (1991) 71–86. [CrossRef]
  2. P.N. Belhumeur, J.P. Hespanha, D.J. Kiregman. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 19(7) (1997) 711–720 [CrossRef]
  3. M. Belkin, P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput. 15 (6) (2003) 1373–1396 [CrossRef]
  4. J. Tenenbaum, V. de Silva, J. Langford. A global geometric framework for nonlinear dimensionality reduction, Science. 290 (5050) (2000) 2319–2323 [CrossRef] [PubMed]
  5. S.T. Roweis, L.K. Saul. Nonlinear dimensionality reduction by locally linear embedding, Science. 290 (5050) (2000) 2323–2326 [CrossRef] [PubMed]
  6. X.F. He, S.C. Yan, Y.X. Hu, et al. Face recognition using Laplacianfaces, IEEE Transactions on Pattern Analysis and Machine Intelligence. 27(3) (2005) 328–340 [CrossRef]
  7. D. Xu, S. Yan, D. Tao, et al. Marginal Fisher Analysis and Its Variants for Human Gait Recognition and Content-Based Image Retrieval. IEEE Transactions on Image processing. 16(11)(2007) 2811–2821 [CrossRef]
  8. J. Gui, W. Jia, L. Zhu, et al. Locality preserving discriminant projection for face and palmprint recognition, Neurocomputing. 73 (13) (2010) 2696–2707. [CrossRef]
  9. M. Sugiyama. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis, Journal of Machine Learning Research. 8 (5) (2007) 1027–1061.
  10. H.T. Chen, H.W. Chang, T.L. Liu. Local discriminant embedding and its variants, in: Proceedings of the IEEE Computer Visual and Pattern Recognition (CVPR). 2005, pp. 846–853.
  11. D. Cai, X. He, K. Thou, et al. Locality sensitive discriminant analysis, in: Proceedings of the 20th International Joint Conference Artificial Intelligence(HCAI). 2007, pp. 708–713.
  12. Q.X. Gao, D.Y. Xie, H. Xiu, et al. Supervised feature extraction based on information fusion of local structure and diversity information, Acta Autom. Sin. 36(8)(2010) 1108–1114.