 E. E. Alonso, N. M. Pinyol, and a. Yerro, “Mathematical Modelling of Slopes,” Procedia Earth Planet. Sci., vol. 9, pp. 64–73 (2014) [CrossRef]
 H. F. Yeh and C. H. Lee, “Soil water balance model for precipitationinduced shallow landslides,” Environ. Earth Sci., vol. 70, no. 6, pp. 2691–2701 (2013) [CrossRef]
 E. Damiano and P. Mercogliano, “Potential Effects of Climate Change on Slope Stability in Unsaturated Pyroclastic Soils,” in Landslide Science and Practice, vol. 4, C. Margottini, P. Canuti, and K. Sassa, Eds. Berlin: Springer (2013)
 H. Rahardjo, A. Satyanaga, and E. C. Leong, “Characteristics of PoreWater Pressure Response in Slopes During Rainfall,” in 3dr Asian Conference on Unsaturated soilsUNSATASIA, pp. 493–498. (2007)
 H. Rahardjo, E. C. Leong, and R. B. Rezaur, “Effect of antecedent rainfall on porewater pressure distribution characteristics in residual soil slopes under tropical rainfall,” Hydrol. Process., vol. 22, no. 4, pp. 506–523, (2008) [CrossRef]
 M. R. Mustafa, R. B. Rezaur, H. Rahardjo, M. H. Isa, and A. Arif, “Artificial neural network modeling for spatial and temporal variations of porewater pressure responses to rainfall Artificial neural network modeling for spatial and temporal variations of porewater pressure responses to rainfall,” Adv. Meteorol., vol. 2015, pp. 1–39, (2015) [CrossRef]
 M. R. Mustafa, R. B. Rezaur, M. H. Isa, and H. Rahardjo, “Estimation of soil porewater pressure variations using a thin plate spline basis function,” in WIT Transactions of the Built Environment, vol 137 pp. 615–624 (2014) [CrossRef]
 M. R. Mustafa, R. B. Rezaur, S. Saiedi, H. Rahardjo, and M. H. Isa, “Evaluation of MLPANN Training Algorithms for Modeling Soil PoreWater Pressure Responses to Rainfall,” J. Hydrol. Eng., vol. 18, no. January, pp. 50–57, (2013) [CrossRef]
 M. R. Mustafa, R. B. Rezaur, M. H. Isa, S. Saiedi, and H. Rahardjo, “Effect of antecedent conditions on prediction of porewater pressure using artificial neural networks,” Mod. Appl. Sci., vol. 6, no. 2, pp. 6–15, (2012) [CrossRef]
 M. R. Mustafa, R. B. Rezaur, H. Rahardjo, and M. H. Isa, “Prediction of porewater pressure using radial basis function neural network,” Eng. Geol., vol. 135–136, pp. 40–47, (2012) [CrossRef]
 C. J. C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121–167, Jun. (1998) [NASA ADS] [CrossRef]
 R. Noori, Z. Deng, A. Kiaghadi, and F. T. Kachoosangi, “How Reliable Are ANN , ANFIS , and SVM Techniques for Predicting Longitudinal Dispersion Coefficient in Natural Rivers ?,” J. Hydraul. Eng., pp. 1–8 (2015)
 W. Zhao, T. Tao, and E. Zio, “Parameters tuning in support vector regression for reliability forecasting,” Chem. Eng. Trans., vol. 33, pp. 523–528 (2013)
 Z. A. Zakaria and A. Shabri, “Streamflow Forecasting at Ungaged Sites Using Support Vector Machines,” Appl. Math. Sci., vol. 6, no. 60, pp. 3003–3014 (2012)
 K. Lamorski, C. Sławiński, F. Moreno, G. Barna, W. Skierucha, and J. L. Arrue, “Modelling soil water retention using support vector machines with genetic algorithm optimisation.,” Scientific World Journal., vol. 2014 (2014) [CrossRef]
 B. Zhu, Z. Cheng, and H. Wang, “A kernel function Optimisation and Selection Algorithm Based on Cost Function Maximization,” in IIEEE International Conference on Imaging Systems and Techniques (IST), 2013, no. 2, pp. 259–263 (2013)
 V. N. Vapnik, The Nature of Statistical Learning Theory, vol. 8, no. 6. New York, New York, USA: Springer, (1995) [CrossRef]
 V. Kecman, Learning and Soft Computing. London, England: MIT press, (2001)
 Y. Chang, C.J. Hsieh, K.W. Chang, M. Ringgaard, and C. Lin, “Training and Testing Lowdegree Polynomial Data Mappings via Linear SVM,” J. Mach., vol. 11, pp. 1471–1490, (2010)
 S. Yaman and J. Pelecanos, “Machines for Speaker Veri fi cation,” IEEE Signal Process. Lett., vol. 20, no. 9, pp. 901–904, (2013) [CrossRef]
 G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Comput. Electr. Eng., vol. 40, no. 1, pp. 16–28, (2014) [CrossRef]
 S. Maldonado and R. Weber, “A wrapper method for feature selection using Support Vector Machines,” Inf. Sci. (Ny)., vol. 179, no. 13, pp. 2208–2217, (2009). [CrossRef]
 R. Kohavi and R. Kohavi, “Wrappers for feature subset selection,” Artif. Intell., vol. 97, no. 1–2, pp. 273–324, (1997). [CrossRef]
 H. Mark, F. Eibe, H. Geoffrey, P. Bernhard, R. Peter, and I. H. Witten “The WEKA Data Mining Software: An Update,” SIGKDD Explorations, vol 11, no 1 (2009)
 Y. ELManzalawy and V. Honavar, “WLSVM : Integrating LibSVM into Weka Environment,” (2005). http://www.cs.iastate.edu/~yasser/wlsv
 C. C. Chang, C. J. Lin “LIBSVM: A Library for Support Vector Machines,” ACM Trans Intell Syst Technol (ACM TIST) vol 2, pp. 1–27 (2011) [NASA ADS] [CrossRef]
 P. A. Kagoda, J. Ndiritu, C. Ntuli, and B. Mwaka, “Application of radial basis function neural networks to shortterm streamflow forecasting,” Phys. Chem. Earth, Parts A/B/C, vol. 35, no. 13–14, pp. 571–581, (2010) [CrossRef]
Open Access
Issue 
MATEC Web of Conferences
Volume 59, 2016
2016 International Conference on Frontiers of Sensors Technologies (ICFST 2016)



Article Number  04003  
Number of page(s)  6  
Section  Environmental Science and Engineering  
DOI  http://dx.doi.org/10.1051/matecconf/20165904003  
Published online  24 May 2016 