Open Access
MATEC Web of Conferences
Volume 58, 2016
The 3rd Bali International Seminar on Science & Technology (BISSTECH 2015)
Article Number 01018
Number of page(s) 7
Section Chemical Engineering & Food Technology
Published online 23 May 2016
  1. Abbona F., Boistelle R., Haser R. (1979). Hydrogen bonding in MgHPO4•3H2O (newberyite). Acta Crystallographica, B35, 2514-2518. [CrossRef]
  2. Abdelrazig B.E.I., Sharp J.H. (1988). Phase changes on heating ammonium magnesium phosphate hydrates. Thermochimica Acta 129,197-215. [CrossRef]
  3. Abbona F., Lundager Madsen H. E., Boistelle R. (1988). The final phases of calcium and magnesium phosphates precipitated from solutions of high to medium concentration J. Cryst. Growth. 89, 592-602. [CrossRef]
  4. Battistoni P., Fava G., Pavan P., Musacco A., Cecchi F. (1997). Phosphate Removal in Anaerobic Liquors by Struvite Crystallization Without Addition of Chemicals: Preliminary Results, Wat. Res., 31, 2925-2929. [CrossRef]
  5. Battistoni P., Pavan P., Prisciandaro M., Cecchi F. (2000). Struvite Crystallization: A feasible and reliable way to fix phosphorus in anaerobic supernatants, Wat. Res., 34, 3033-3041. [CrossRef]
  6. Doyl J.D. and Parsons S.A. (2002). Struvite formation, control and recovery, Water Research Vol.36, 3925–3940. [CrossRef]
  7. Frost R.L., Weier M.L., Erickson K.L. (2004). Thermal decomposition of struvite, J. Therm. Anal. Calorim. 76,1025-1033. [CrossRef]
  8. Gaterell M.R., Gay R., Wilson R., Gochin R.J., Lester J.N. (2000). An economic and environmental evaluation of the opportunities for substituting phosphorus recovered from wastewater treatment works in existing UK fertiliser markets, Env. Technol., 21, 1067-1084. [CrossRef]
  9. Graeser S., Wostl W., Bojar H.P., Berlepsch P., Armbruster T., Raber T., Ettinger K., Walter F. (2008). Struvite-(K), KMgPO4·6H2O, the potassium equivalent of struvite a new mineral. European Journal of Mineralogy 20, 629–633. [CrossRef]
  10. Lu H. M. and Hardy J. R. (1991). First-principles study of phase transitions in KNO3. Physical Review. B 44, 7215. [CrossRef]
  11. Loewenthal R.E., Kornmuller U.R.C., Van Heerden E.P. (1994). Struvite Precipitation in Anaerobic Treatment Systems, In 17th International Symposium on Anaerobic Digestion, Capetown, South Africa,498-507.
  12. Kofina A.N., and Koutsoukos P.G. (2005). Spontaneous Precipitation of Struvite from Synthetic Wastewater Solutions, Crystal Growth & Design Vol.5, 489–496. [CrossRef]
  13. Musvoto E. V., Wentzel M. C., Ekama G.A. (2000). Integrated Chemical-Physical Process Modeling-Ii. Simulation Aeration Treatment For Anaerobic Digester Supernatant. Water Research, 34, 1868 - 1880. [CrossRef]
  14. Mehta C.M. and Batstone D. J. (2013). Nucleation and growth kinetics of struvite crystallization, Water Research Vol. 47, 2890-2900. [CrossRef]
  15. Ott H. (1926). Die Strukturen von Mn O, Mn S, Ag F, Ni S, Sn I4, Sr Cl2, Ba F2, praezisions messungen einiger alkalihalogenide. Z. Kristallogr. 63, 222-230.
  16. Pernet M., Joubert J.C., Berthet-Colominas C. (1975). Etude par diffraction neutronique de la forme haute pression de FeOOH, Solid State Communications, Volume 17, Issue 12, 15, Pages 1505–1510. [CrossRef]
  17. Prince E., (1993). Mathematical Aspects of Rietveld Refinement. The Rietveld Method. Edited by Young, R.A. International Union of Crystallography, Oxford, New York, 43-54.
  18. Priestley A.J., Cooney E., Booker N.A., Fraser I.H. (1997). Nutrients in wastewaters-ecological problem or commercial opportunity. Proceedings of the 17th Federal Convention of the Australian Water and Wastewater Association, Melbourne, 1, 340-346.
  19. Rietveld H.M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography 2, 65–71. [CrossRef]
  20. Rodriguez J.-Carvajal. Program Fullprof.2k, version 3.30, Laboratoire Leon Brillouin, France, June 2005.
  21. Snoeying V.L., Jenkins D. (1980). Water Chemistry, John Wiley and Sons Inc., New York.
  22. Sarkar A.K. (1991). Hydration/dehydration characteristics of struvite and dittmarite pertaining to magnesium ammonium phosphate cement systems. J. Mater. Sci., 26, 2514–2518. [CrossRef]
  23. Schulze-Rettmer R. (1991). The Simultaneous Chemical Precipitation of Ammonium and Phosphate in the Form of Magnesium Ammonium Phosphate, Water Sci. Technol., 23, 659-667
  24. Stumm W., Morgan J.J. (1996). Aquatic Chemistry, Wiley-Interscience, New York.
  25. Shin H.S., Lee S.M. (1997). Removal of Nutrients in Wastewater by Using Magnesium Salts, Env. Technol., 19, 283-290. [CrossRef]
  26. Stratful L., Scrimshaw M.D., and Lester J.N. (2001). Conditions influencing the precipitation of magnesium ammonium phosphate, Water Research Vol. 35, 4191–4199. [CrossRef]
  27. Suzuki K., Tanaka Y., Kuroda K., Hanajima D. and Fukumoto Y. (2005). Recovery of phosphorous from swine wastewater through crystallization, Bioresource Technology Vol. 96, 1544–1550. [CrossRef]
  28. Suzuki K., Tanaka Y., Kuroda K., Hanajima D., Fukumoto Y., Yasuda T., Waki M. (2007). Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device, Bioresource Technology Vol. 98, 1573–1578. [CrossRef]
  29. Tünay O., Kabdasli I., Orhon D., Kolçak S. (1997). Ammonia removal by magnesium ammonium phosphate precipitation in industrial wastewaters, Water Sci. Technol., 36, 225-228. [CrossRef]
  30. Whitaker A., Jeffery J.W. (1970) . The crystal structure of struvite, MgNH4PO4•6H2O. Acta Crystallographica B26,1429-1440. [CrossRef]
  31. Winburn R.S., Grier D.G., McCarthy G.J., Peterson R.B. (2000). Rietveld quantitative X-ray diffraction analysis of NIST fly ash standard reference materials. Powder Diffraction 15, 163-172. [CrossRef]