Open Access
MATEC Web of Conferences
Volume 56, 2016
2016 8th International Conference on Computer and Automation Engineering (ICCAE 2016)
Article Number 05002
Number of page(s) 5
Section Modern Communication Technology and Applications
Published online 26 April 2016
  1. B. Wang and K.J.R. Liu, “Advances in cognitive radio networks: A survey,” IEEE J. Sel. Topics Signal Process., vol. 5, no. 1, pp. 5–23, Feb. 2011. [CrossRef]
  2. Z. Zhou, J. Hai, T. Peng, and J. Slevinsky, “Channel exploration and exploitation with imperfect spectrum sensing in cognitive radio networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 3, pp. 429–441, Mar. 2013. [CrossRef]
  3. Auer P, Cesa-Bianchi N, Fischer P. “Finite-time analysis of the multiarmed bandit problem,” Mach. Learn., vol.47, no.2-3, pp. 235–256, 2002. [CrossRef]
  4. X. Fang, D. Yang, and G. Xue, “Taming wheel of fortune in the air: an algorithmic framework for channel selection strategy in cognitive radio networks,” IEEE Trans. Veh. Technol., vol. 62, no. 2, pp. 783–796, Feb. 2013. [CrossRef]
  5. K. Liu and Q. Zhao, “Distributed learning in multi-armed bandit with multiple players,” IEEE Trans. Signal Process., vol. 58, no. 11, pp. 5667–5681, Nov. 2010. [CrossRef]
  6. L. Blumrosen and S. Dobzinski, “Welfare maximization in congestion games,” IEEE J. Sel. Areas Commun., vol. 25, no. 6, pp. 1224–1236, Aug. 2007. [CrossRef]
  7. L. M. Law, J. Huang, and M. Liu, “Price of anarchy for congestion games in cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 11, no. 10, pp. 3778–3787, Oct. 2012. [CrossRef]
  8. D. Monderer and L.S. Shapley, “Potential games,” Games Econ. Behav., vol. 14, pp. 124–143, 1996.
  9. Y. Xu, J. Wang, Q. Wu, A. Anpalagan, and Y.-D. Yao, “Opportunistic spectrum access in unknown dynamic environment: a game-theoretic stochastic learning solution,” IEEE Trans. Wireless Commun., vol. 11, no. 4, pp. 1380–1391, Apr. 2012. [CrossRef]
  10. T. Li-Chuan, C. Feng-Tsun, Z. Daqiang, et al., “Network selection in cognitive heterogeneous networks using stochastic learning,” IEEE Commun. Lett., vol. 17, no. 12, pp. 2304–2307, Dec. 2013. [CrossRef]
  11. P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The non-stochastic multiarmed bandit problem,” SIAM Journal on Computing, vol. 32, no. 1, pp. 48–77, Nov. 2002. [CrossRef]
  12. P. Sastry, V. Phansalkar, and M. Thathachar, “Decentralized learning of nash equilibria in multi-person stochastic games with incomplete information,” IEEE Trans. Syst., Man, Cybernm., vol. 24, no. 5, pp. 769–777, May 1994. [CrossRef]
  13. V. Erceg, L. J. Greenstein, S. Y. Tjandra, et al., “An empirically based path loss model for wireless channels in suburban environments,” IEEE J. Sel. Areas Commun., vol. 17, no. 7, pp. 1205–1211, Jul. 1999. [CrossRef]