Open Access
MATEC Web of Conferences
Volume 56, 2016
2016 8th International Conference on Computer and Automation Engineering (ICCAE 2016)
Article Number 03001
Number of page(s) 8
Section Signal Analysis and Processing Technology
Published online 26 April 2016
  1. Integration of Chinese folk songs · Shaanxi Juan. The Editorial Committee, Integration of Chinese folk songs: Shaanxi Juan [M]. Chinese ISBN center, (1994).
  2. Chen Haoyue. Characteristics and style of Shaanxi folk songs [J]. Stage (journal of Peking university), (2014), 3:238–239.
  3. Zhang Zhentao. Into the modern northern shaanxi folk songs [J]. Chinese musicology, 2012, (4):75–86.
  4. Liu Dajian. Three elements of constituting the style of XinTianYou [J]. Art research, (2008), (1):42–44.
  5. Fu Z, Lu G, Ting K M, et al. A Survey of Audio-Based Music Classification and Annotation [J]. Multimedia IEEE Transactions on, (2011), 13(2):303–319. [CrossRef]
  6. Li T, Ogihara M, Li Q. A comparative study on content-based music genre classification[C]//Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 2003: 282–289.
  7. Sturm B L. Classification accuracy is not enough [J]. Journal of Intelligent Information Systems, (2013), 41(3): 371–406. [CrossRef]
  8. Jouvet, D., Vincent, E., Dung Tran. Investigating stranded GMM for improving automatic speech recognition [J]. //Hands-free Speech Communication and Microphone Arrays (HSCMA), 2014 4th Joint Workshop on IEEE, (2014): 192–196.
  9. Dileep A, D D A, Dileep DA, et al. Class-specific GMM based intermediate matching kernel for classification of varying length patterns of long duration speech using support vector machines[J]. Speech Communication, (2014):126–143. [CrossRef]
  10. Qiao Jianzhong. It should be emphasized that the literature value of “integration” “Integration of Chinese folk songs” [J]. People’s music, (1986), (2):38–41.
  11. Min Gang; Zhang Xiongwei; Yang Jibin; Chen Yanpu. Sparse representation and performance analysis for LSP parameters via dictionary learning [J]. Journal of PLA University of Science and Technology (Natural Science Edition), (2014):121–126.
  12. Tolonen, Karjalainen. A Computationally Efficient Multipitch Analysis Model, IEEE Transactions on Speech and Audio Processing, 2000, 8(6):708–716. [CrossRef]
  13. Lartillot O. Mirtempo: tempo estimation through advanced frame-by-frame peaks tracking [J]. Proceedings of the Music Information Retrieval Evaluation eXchange (MIREX), Utrecht, Netherlands, (2010):1–2.
  14. Bosteels K, Kerre E E. Fuzzy audio similarity measures based on spectrum histograms and fluctuation patterns [M] //Computational Intelligence in Multimedia Processing: Recent Advances. Springer Berlin Heidelberg, (2008): 213–231. [CrossRef]
  15. Tzanetakis G, Marsyas Cook P.: A framework for audio analysis [J]. Organised sound, (2000), 4(03): 169–175. [CrossRef]
  16. Olivier Lartillot, Petri Toiviainen. A Matlab Toolbox For Musical Feature Extraction From Audio [M]. Proc. of the 10th Int. Conference on Digital Audio Effects (DAFx-07), Bordeaux, France, September 10-15, (2007):237–244
  17. Zhen B, Wu X, Liu Z, et al. On the Importance of Components of the MFCC in Speech and Speaker Recognition [J]. Acta Scientiarum Naturalium-Universitatis Pekinensis, (2001), 37(3): 371–378.
  18. Goto M. A chorus-section detecting method for musical audio signals [A]. Hongkong: IEEE Press, (2003).437–440.