Open Access
MATEC Web of Conferences
Volume 51, 2016
2016 International Conference on Mechanical, Manufacturing, Modeling and Mechatronics (IC4M 2016)
Article Number 03003
Number of page(s) 7
Section Chapter 3: Experimental and Empirical Studies in Mechanical and Manufacturing Engineering
Published online 06 April 2016
  1. Muthukrishnan, N., Murugan, M., & Prahladarao, K. (2008). Machinability issues in turning of Al–SiC (10p) metal matrix composites. International Journal of Advanced Manufacturing Technology, Vol. 39, 2008, pp 211–218. [CrossRef]
  2. Manna, A., & Bhattacharyya, B. (2003). A study on machinability of Al/SiC–MMC. Journal of Materials Processing Technology, 140, No.1, pp 711–716. [CrossRef]
  3. Ozben, T., Kilickap, E., & Çakır, O. (2008). Investigation of mechanical and machinability properties of SiC particle reinforced Al–MMC. Journal of Materials Processing Technology, 198, 220–225. [CrossRef]
  4. Daniel, B. S. S., Murthy, V. S. R., & Murty, G. S. (1997). Metal-ceramic composites via in situ methods. Journal of Materials Processing Technology, 68, 132–155. [CrossRef]
  5. Demir, H., & Gunduz, S. (2009). The effects of aging on machinability of 6061 aluminum alloy. Materials & Design, 30, 1480–1483. [CrossRef]
  6. Guo, D., Zhang, M., Jin, Z., & Kang, R. (2006). Pulse plating of copper-ZrB2 composite coatings. Journal of Materials Science and Technology, 22, 514–518 [CrossRef]
  7. Naveenkumar, G., Narayanasamy, R., Natarajan, S., Kumareshbabu, S. P., Sivaprasad, K., & Sivasankaran, K. (2010). Dry sliding wear behavior of AA 6351-ZrB2 in situ composite at room temperature. Materials & Design, 31, 1526–1532. [CrossRef]
  8. Ozcatalbas, Y. (2003a). Chip and built-up edge formation in the machining of in situ Al4C3–Al composite. Materials & Design, 24, 215–221. [CrossRef]
  9. Anandakrishnan, A., & Mahamani, A. (2010). Investigations of flank wear, cutting force, and surface roughness in the machining of Al-6061–TiB2 in situ metal matrix composites produced by flux-assisted synthesis. International Journal of Advanced Manufacturing Technology, 55(1-4), 65–73. [CrossRef]
  10. Doniavi, A., Eskandarzade, M., Abdi, A., & Totonchi, A. (2008). Empirical modeling of EDM parameters using Grey relational analysis. Asian Journal of Scientific Research, 1, 502–509. [CrossRef]
  11. Ganeshbabu, B., Selladurai, V., & Shanmugam, R. (2008). Analytical modeling of cutting forces of end milling operation on aluminum silicon carbide particulate metal matrix composite material using response surface methodology. ARPN Journal of Engineering and Applied Sciences, 3, 5–18.
  12. Haq, A. N., Marimuthu, P., & Jeyapaul, R. (2008). Multi response optimization of machining parameters of drilling Al/SiC metal matrix composite using grey relational analysis in the Taguchi method. International Journal of Advanced Manufacturing Technology, 37, 250–255. [CrossRef]
  13. Huang, J. T., & Liao, Y. S. (2003). Optimization of machining parameters of Wire-EDM based on Grey relational and statistical analyses. International Journal of Production Research, 41, 1707–1720. [CrossRef]
  14. Kumar, S., Subramaniyasarma, V., & Murty, B. S. (2007). Influence of in-situ formed TiB2 particles on the abrasive wear behavior of Al-4Cu alloy. Materials Science and Engineering A, 465, 160–164. [CrossRef]
  15. Lu, L., Lai, M. O., & Chen, F. L. (1997). Al-4% Cu composite reinforced with in-situ TiB2 particles. Acta Materialia, 45, 4297–4309. doi:10.1016/S1359-6454(97)00075-X [CrossRef]