Open Access
MATEC Web of Conferences
Volume 47, 2016
The 3rd International Conference on Civil and Environmental Engineering for Sustainability (IConCEES 2015)
Article Number 01015
Number of page(s) 5
Section Cementitious, Concrete and Sustainable Materials
Published online 01 April 2016
  1. D. Law, A.A. Adam, T. Molyneaux, I. Patnaikuni and A. Wardhono, Long term durability properties of class F fly ash geopolymer concrete, Materials and Structures, 48, 721-731, (2015). [CrossRef]
  2. A.A. Adam and Horianto, The effect of temperature and duration of curing on the strength of fly ash based geopolymer mortar, Procedia Engineering, 95, 410-414, (2014). [CrossRef]
  3. A.M.M. Al Bakri, H. Kamarudin, M. BinHussain, I.K. Nizar, Y. Zarina and A.R. Rafiza, The effect of curing temperature on physical and chemical properties of geopolymers, Physics Procedia, 22, 286-291, (2011). [CrossRef]
  4. A.R. Brough, A. Katz, G.K. Sun, L.J. Struble, R.J. Kirkpatrick and J.F. Young, Adiabatically cured, alkali-activated cement-based wasteforms containing high levels of fly ash: formation of zeolites and al-substituted C-S-H, Cement and Concrete Research, 31, 1437-1447, (2001). [CrossRef]
  5. A.S. de Vargas, D.C.C. Dal Molin, A.C.F. Vilela, F.J. da Silva, B. Pavão and H. Veit, The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers, Cement and Concrete Composites, 33, 653-660, (2011). [CrossRef]
  6. G. Kovalchuk, A. Fernández-Jiménez and A. Palomo, Alkali-activated fly ash: Effect of thermal curing conditions on mechanical and microstructural development - part II, Fuel, 86, 315-322, (2007). [CrossRef]
  7. P.R. Vora and U.V. Dave, Parametric studies on compressive strength of geopolymer concrete, Procedia Engineering, 51, 210-219, (2013). [CrossRef]
  8. K. Dombrowski, A. Buchwald and M. Weil, The influence of calcium content on the structure and thermal performance of fly ash based geopolymers, J. of Materials Science, 42, 3033-3043, (2007). [CrossRef]
  9. F. Puertas, S. Martínez-Ramírez, S. Alonso and T. Vázquez, Alkali-activated fly ash/slag cements: Strength behaviour and hydration products, Cement and Concrete Research, 30, 1625-1632, (2000). [CrossRef]
  10. S. Puligilla and P. Mondal, Role of slag in microstructural development and hardening of fly ashslag geopolymer, Cement and Concrete Research, 43, 70-80, (2013). [CrossRef]
  11. C.K. Yip, G.C. Lukey, J.L. Provis and J.S.J. van Deventer, Effect of calcium silicate sources on geopolymerisation, Cement and Concrete Research, 38, 554-564, (2008). [CrossRef]
  12. J. Temuujin, A. van Riessen and R. Williams., Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes, J. of Hazardous Materials, 167, 82-88, (2009). [CrossRef]
  13. H.M. Khater, Effect of calcium on geopolymerization of aluminosilicate wastes, Journal of Materials in Civil Engineering, 24, 92-101, (2012). [CrossRef]
  14. W.K.W. Lee and J.S.J. Van Deventer, The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements, Cement and Concrete Research, 32, 577-584, 2002. [CrossRef]