Open Access
MATEC Web of Conferences
Volume 44, 2016
2016 International Conference on Electronic, Information and Computer Engineering
Article Number 02033
Number of page(s) 5
Section Electronics, Information and Engineering Application
Published online 08 March 2016
  1. Harary F, Conditional colorability in graphs, In Graphs and Applications,Proc Graph theory Fist Colorado symp, John Wilh& Sons, New York, 1985.
  2. Burns A C and Schelp R H, Vertex-distinguishing Proper Edge-colorings, J of Graph Theory, 1997, 26 (2): 7382.
  3. Bazgan C Harkat-Benhamdine A, Li H, etc. On the Vertex-distinguishing Proper Edge-coloring of Graph, J Combin Theory Ser B, 1999, 75: 288–301. [CrossRef]
  4. Balister P N, Bollobàs B, Schelp R H, Vertex-distinguishing coloring of graphs with Δ(G)=2, Discrete Mathematics, 2002, 252 (2): 17 29. [CrossRef]
  5. Balister P N, Riordan O M and Schelp R H, Vertex-distinguishing edge coloring of graphs, J. Graph Theory 42(2003)95–109. [CrossRef]
  6. Zhongfu Zhang, Linzhong Liu, Jianfang Wang, Adjacent Strong Edge Coloring of Graphs, Applied Matbhmatics Letters, 2002, 15: 623–626. [CrossRef]
  7. Wang shudong, Li chongming, Xu Ji, et, On the adjacent strong edge coloring of some graphs, J of Mathematical Research and exposition, Vol.22, No 4, 2002, 412–417.
  8. Balister P N, Gyori and Schelp R H, On the adjacent-strong edge coloring of graphs with Δ(G) 3, J.G.T to appear.
  9. Bondy J A and Marty U S R, Graph Theory with Applications, The Macmillan Press Ltd, New York, 1976.
  10. Chartrand G, Linda L F, Graphs and diagraphs, Ind edition wadsirthBrokks/cole, Monterey, CA, 1986.