Open Access
MATEC Web of Conferences
Volume 42, 2016
2015 The 3rd International Conference on Control, Mechatronics and Automation (ICCMA 2015)
Article Number 05003
Number of page(s) 5
Section Applications of Computer and IT
Published online 17 February 2016
  1. R. H. Myers, D. C. Montgomery and C. M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiments, John Wiley & Sons., 2009
  2. Gosavi, “Parametric Optimization: Response Surfaces And Neural Networks,” in Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning, Rolla, Missouri, USA, Springer, 2015, pp. 37–46.
  3. A. Cameron, A. G. Windmeijer, H. Gramajo, D. Cane and C. Khosla, “An R-squared measure of goodness of fit for some common nonlinear regression models,” Journal of Econometrics, vol. 77, no. 2, pp. 329–342, 1997. [CrossRef]
  4. J. P. Kleijnen and R. G. Sargent, “A methodology for fitting and validating metamodels in Simulation,” European Journal of Operation Research, pp. 14–29, 2000. [CrossRef]
  5. S. Weisberg, Applied Linear Regression, Wiley, 2005. [CrossRef]
  6. G. G. Wang, Z. Dong and P. Aitchison, “Adaptative Response Surface Method – A Global Optimization Scheme for Approximation-based Design Problems,” Journal of Engineering Optimization, pp. 707–734, 2001. [CrossRef]
  7. G. G. Wang, “Adaptive response surface method using inherited Latin hypercube design points,” ASME Journal of Mechanical Design, vol. 1, nº 125, pp. 210–220, 2003. [CrossRef]
  8. G. Steenackers, F. Presezniak and P. Guillaume, “Development of an adaptive response surface method for optimization of computation-intensive models,” Computers & Industrial Engineering, Elsevier, pp. 847–855, 2009. [CrossRef]
  9. L. Xiaojia y N. Fangfei, “New response surface model and its applications in aerodynamic optimization of axial compressor blade profile” Front. Energy Power Eng. China, vol. 2, nº 4, pp. 541–549, 2008. [CrossRef]
  10. J. Lee, S. Shin y S. Kim, “An Optimal Design of Marine Systems based on Neuro-Response Surface Method,” de 10th International Conference on Natural Computation, Xiamen, 2015.
  11. N. Roussouly, F. Petitjean y M. Salaun, “A new adaptive response surface method for reliability analysis” Probabilistic Engineering Mechanics, vol. 1, nº 32, pp. 103–115, 2013. [CrossRef]
  12. S. Chakraborty y S. Arunabh, “Adaptive response surface based efficient Finite Element Model Updating” Finite Elements in Analysis and Design, vol. 1, nº 80, pp. 33–40, 2014. [CrossRef]
  13. X. S. Nguyen, A. Sellier, F. Duprat y G. Pons, “Adaptive response surface method based on a double weighted regression technique” Probabilistic Engineering Mechanics, vol. 1, nº 24, pp. 135–143, 2009. [CrossRef]
  14. W. Y. L. G. Hu y Z. Hua, “Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method” journal of materials processing technology, vol. 1, nº 197, pp. 77–88, 2008.
  15. T. Santner, B. Williams and N. W., The Design and Analysis of Computer Experiments, Springer, 2003. [CrossRef]
  16. P. Bratley and B. L. Fox, “Algorithm 659 Implementing Sobol’s Quasirandom Sequence Generator” ACM Transactions on Mathematical Software, vol. 14, no. 1, pp. 88–100, 1988. [CrossRef]
  17. J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, “Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions” SIAM Journal of Optimization, vol. 9, no. 1, pp. 112–147, 1998. [CrossRef]
  18. G. Mastinu, M. Gobbi and C. Miano, Optimal Design of Complex Mechanical Systems with Applications to Vehicle Engineering, Springer, 2006.
  19. P. Y. Papalambros and D. J. Wilde, Principles of Optimal Design: Modeling and Computation, Cambridge University Press, 2000. [CrossRef]