Open Access
MATEC Web of Conferences
Volume 41, 2016
1st Mini Conference on Emerging Engineering Applications (MCEEA’15)
Article Number 05001
Number of page(s) 4
Section Algorithms and Applications
Published online 01 February 2016
  1. Ch. Tsitouras, Runge–Kutta pairs of orders 5(4) satisfyning only the first column simplifyiyng assumption, Computers and Mathematics with Applications, 62 (2011), 770–775. [CrossRef]
  2. I. Th. Famelis and Ch. Tsitouras, Differential Evolution for the derivation of Runge Kutta pairs., (ICNAAM 2014) AIP Conference Proceedings 1648, 740004 (2015); doi: 10.1063/1.4912959
  3. J. C. Butcher, Implicit Runge-Kutta processes, Math. Comput., 18 (1964), 50–64. [CrossRef]
  4. J. C. Butcher, On Runge-Kutta processes of high order, J. Austral. Math. Soc., 4 (1964), 179–194. [CrossRef]
  5. E. Fehlberg, Low order classical Runge-Kutta formulas with stepsize control and their application to some heat-transfer problems, TR R-287, NASA, (1969)
  6. J. C. Butcher, Coefficients for the study of Runge-Kutta integration processes, J. Austr. Math. Soc., 3 (1963), 185–201. [CrossRef]
  7. R. M. Storn and K. V. Price, Differential Evlution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, Journal of Global Optimization 11 (1997), 341–359. [CrossRef] [MathSciNet]
  8. K. V. Price, R. M. Storn and J. A. Lampinen, Differential Evolution: A practical approach to global optimization, Springer (2005).
  9. V. Feoktistov, Differential Evolution, In Search of Solutions, Springer (2006).