Open Access
MATEC Web of Conferences
Volume 38, 2016
UTP-UMP Symposium on Energy Systems 2015 (SES 2015)
Article Number 02002
Number of page(s) 11
Section Hybrid Thermal System
Published online 11 January 2016
  1. Pollet, B. G., Staffell, I., & Shang, J. L. (2012). Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects. Electrochimica Acta, 84, 235–249. doi: 10.1016/j.electacta.2012.03.172 [CrossRef]
  2. Lv, C., Zhang, J., Li, Y., & Yuan, Y. (2015). Mechanism analysis and evaluation methodology of regenerative braking contribution to energy efficiency improvement of electrified vehicles. Energy Conversion and Management, 92, 469–482. [CrossRef]
  3. Jorgensen, K. (2008). Technologies for electric, hybrid and hydrogen vehicles: Electricity from renewable energy sources in transport. Utilities Policy, 16(2), 72–79. [CrossRef]
  4. van Vliet, O., Brouwer, A. S., Kuramochi, T., van den Broek, M., & Faaij, A. (2011). Energy use, cost and CO2 emissions of electric cars. Journal of Power Sources, 196(4), 2298–2310. doi: 10.1016/j.jpowsour.2010.09.119 [CrossRef]
  5. Clarke, P., Muneer, T., & Cullinane, K. (2010). Cutting vehicle emissions with regenerative braking. Transportation Research Part D: Transport and Environment, 15(3), 160–167. doi: 10.1016/j.trd.2009.11.002 [CrossRef]
  6. Zhang, Z., Chen, A., Matveev, A., Nilssen, R., & Nysveen, A. (2013). High-power generators for offshore wind turbines. Energy Procedia, 35, 52–61. [CrossRef]
  7. Mahmoudi, A., Kahourzade, S., Rahim, N. A., Ping, H. W., & Uddin, M. N. (2013). Design and prototyping of an optimised axial-flux permanent-magnet synchronous machine. IET Electric Power Applications, 7(5), 338–349. [CrossRef]
  8. T&E, CO2 Emissions from New Cars—Position paper in response to the European Commission proposal, 2008.
  9. De Almeida, P., & Silva, P. D. (2009). The peak of oil production—timings and market recognition. Energy Policy, 37(4), 1267–1276. [CrossRef]
  10. Plunkett Research Ltd. (2011). Automotive Industry Overview. Retrieved from
  11. Dunn, S. (2002). Hydrogen futures: toward a sustainable energy system. International journal of hydrogen energy, 27(3), 235–264. [CrossRef]
  12. Culley, M. R., Carton, A. D., Weaver, S. R., Ogley-Oliver, E., & Street, J. C. (2011). Sun, Wind, Rock and Metal: Attitudes toward Renewable and Non-renewable Energy Sources in the Context of Climate Change and Current Energy Debates. Current Psychology, 30(3), 215–233. doi: 10.1007/s12144-011-9110-5 [CrossRef]
  13. Greene, D. L. (2010). Measuring energy security: Can the United States achieve oil independence?. Energy policy, 38(4), 1614–1621. [CrossRef]
  14. Romm, J. (2006). The car and fuel of the future. Energy Policy, 34(17), 2609–2614. [CrossRef]
  15. Van Mierlo, J., Maggetto, G., & Lataire, P. (2006). Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles. Energy Conversion and Management, 47(17), 2748–2760. [CrossRef]
  16. Johansson, B., & Åhman, M. (2002). A comparison of technologies for carbon-neutral passenger transport. Transportation Research Part D: Transport and Environment, 7(3), 175–196. [CrossRef]
  17. Van Vliet, O. P., Kruithof, T., Turkenburg, W. C., & Faaij, A. P. (2010). Techno-economic comparison of series hybrid, plug-in hybrid, fuel cell and regular cars.Journal of Power Sources, 195(19), 6570–6585. [CrossRef]
  18. Silva, C. (2011). Electric and plug-in hybrid vehicles influence on CO2 and water vapour emissions. International Journal of Hydrogen Energy, 36(20), 13225–13232. [CrossRef]
  19. Department of Energy, United States of America. One Million Electric Vehicles By 2015. Retrieved from
  20. Sikes, K., Gross, T., Lin, Z., Sullivan, J., Cleary, T., & Ward, J. (2010). Plug-in hybrid electric vehicle market introduction study: final report (No. ORNL/TM-2009/019). Oak Ridge National Laboratory (ORNL).
  21. The Central People’s Government of the People’s Republic of China. Retrieved from
  22. Green eMotion: Development and Demonstration of a Unique and User-Friendly Framework for Green Electromobility in Europe; EU 7th Framework Programme; CODEMA-City of Dublin Energy Management Agency Ltd.: Dublin, Ireland, 2011.
  23. Kempton, W., & Kubo, T. (2000). Electric-drive vehicles for peak power in Japan. Energy Policy, 28(1), 9–18. [CrossRef]
  24. Won, J. R., Yoon, Y. B., & Lee, K. J. (2009, October). Prediction of electricity demand due to PHEVs (Plug-In Hybrid Electric Vehicles) distribution in Korea by using diffusion model. In Transmission & Distribution Conference & Exposition: Asia and Pacific, 2009 (pp. 1–4). IEEE.
  25. Su, W., Eichi, H., Zeng, W., & Chow, M. Y. (2012). A survey on the electrification of transportation in a smart grid environment. Industrial Informatics, IEEE Transactions on, 8(1), 1–10. [CrossRef]
  26. Toyota. Toyota Prius. Retrieved from
  27. Volkswagen. Volkswagen Jetta.
  28. Honda. Honda CR-Z. Retrieved from
  29. Chevrolet. Chevrolet Volt. Retrieved from
  30. BMW. BMW i8. Retrieved from
  31. Nissan. Nissan LEAF. Retrieved from
  32. Tesla Motors. Model S. Retrieved from
  33. Case Study: Toyota Hybrid Synergy Drive. Retrieved from
  34. Tanaka, Y., Nakaoka, H., Mizutani, Y., & Nakamura, E. (2014). U.S. Patent No. 8,733,849. Washington, DC: U.S. Patent and Trademark Office.
  35. Toyota Prius Vehicle Throttle and Brake Systems: Myth VS. Fact. Retrieved from
  36. Courtesy of Honda. (2015). The Honda Hybrid system: the engine is the main power source. Retrieved from
  37. Courtesy of BMW. (2015). BMW ACTIVE HYBRID. Retrieved from
  38. Tanaka, N. (2011). Technology roadmap: Electric and plug-in hybrid electric vehicles. International Energy Agency, Tech. Rep.
  39. Duvall, M., Knipping, E., Alexander, M., Tonachel, L., & Clark, C. (2007). Environmental assessment of plug-in hybrid electric vehicles. EPRI, July.
  40. Malaysian Automotive Association (MAA). (2014). National Automotive Policy (NAP) 2014. Retrieved from
  41. Malaysia Automotive Institute (MAI). (2014). Malaysia Technology Roadmap 2014. Retrieved from
  42. Accenture. (2011). Plug-in Electric Vehicles: Changing Perceptions, Hedging Bets. Accenture End-consumer Survey on the Electrification of Private Transport ACC11-0320/7-1792, 48 pp. Retrieved from
  43. Sovacool, B. K., & Hirsh, R. F. (2009). Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition. Energy Policy, 37(3), 1095–1103. [CrossRef]
  44. Offer, G. J., Howey, D., Contestabile, M., Clague, R., & Brandon, N. P. (2010). Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system. Energy Policy, 38(1), 24–29. [CrossRef]
  45. Chan, C. (2007). The state of the art of electric, hybrid, and fuel cell vehicles. Proceedings of the IEEE, 95(4), 704–718. [CrossRef]
  46. Sovran, G., & Blaser, D. (2006). Quantifying the potential impacts of regenerative braking on a vehicle’s tractive-fuel consumption for the US, European, and Japanese driving schedules (No. 2006-01-0664). SAE Technical Paper.
  47. Huang, S., & Infield, D. (2010, October). The impact of domestic Plug-in Hybrid Electric Vehicles on power distribution system loads. In Power System Technology (POWERCON), 2010 International Conference on (pp. 1–7). IEEE.
  48. Su, W., & Chow, M. Y. (2012). Performance evaluation of an EDA-based large-scale plug-in hybrid electric vehicle charging algorithm. Smart Grid, IEEE Transactions on, 3(1), 308–315. [CrossRef]
  49. Su, W., & Chow, M. Y. (2012). Computational intelligence-based energy management for a large-scale PHEV/PEV enabled municipal parking deck.Applied Energy, 96, 171–182. [CrossRef]
  50. Su, W., Wang, J., Zhang, K., & Chow, M. Y. (2012, October). Framework for investigating the impact of PHEV charging on power distribution system and transportation network. In IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society (pp. 4735–4740). IEEE.
  51. Zhang, J., Lv, C., Gou, J., & Kong, D. (2012). Cooperative control of regenerative braking and hydraulic braking of an electrified passenger car.Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 0954407012441884.
  52. Gao, Y., & Ehsani, M. (2001). Electronic Braking System of EV and HEV---Integration of Regenerative Braking, Automatic Braking Force Control and ABS(No. 2001-01-2478). SAE Technical Paper.
  53. Robert Bosch GmbH. (2011). Chassis Systems Control, Regenerative Braking System. Retrieved from
  54. Junzhi, Z., Yutong, L., Chen, L., & Ye, Y. (2014). New regenerative braking control strategy for rear-driven electrified minivans. Energy Conversion and Management, 82, 135–145. [CrossRef]
  55. Kim, S. H., Kwon, O. J., Hyon, D., Cheon, S. H., Kim, J. S., Kim, B. H., … Oh, B. S. (2013). Regenerative braking for fuel cell hybrid system with additional generator. International Journal of Hydrogen Energy, 38(20), 8415–8421. doi: 10.1016/j.ijhydene.2013.04.020 [CrossRef]
  56. Gieras, J. F., Wang, R. J., & Kamper, M. J. (2008). Axial flux permanent magnet brushless machines (Vol. 1). New York, NY: Springer. [CrossRef]
  57. Mahmoudi, A., Rahim, N. A., & Hew, W. P. (2011). Axial-flux permanent-magnet machine modeling, design, simulation, and analysis. Scientific Research and Essays, 6(12), 2525–2549.
  58. Ahmed, D. and Ahmad, A. (2013). An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine. Journal of Physics: Conference Series 439 (2013) 012039 [CrossRef]
  59. Li, H., & Chen, Z. (2008). Overview of different wind generator systems and their comparisons. IET Renewable Power Generation, 2(2), 123–138. [CrossRef]
  60. Wang, R. J., Kamper, M. J., Van der Westhuizen, K., & Gieras, J. F. (2005). Optimal design of a coreless stator axial flux permanent-magnet generator.Magnetics, IEEE Transactions on, 41(1), 55–64. [CrossRef]
  61. Fitzgerald, A. E., & Kingsley, C. (1961). Electric machinery: the dynamics and statics of electromechanical energy conversion. McGraw-Hill.
  62. Virtic, P., Pisek, P., Marcic, T., Hadziselimovic, M., & Stumberger, B. (2008). Analytical analysis of magnetic field and back electromotive force calculation of an axial-flux permanent magnet synchronous generator with coreless stator.Magnetics, IEEE Transactions on, 44(11), 4333–4336. [CrossRef]
  63. Hwang, C. C., Li, P. L., Chuang, F. C., Liu, C. T., & Huang, K. H. (2009). Optimization for reduction of torque ripple in an axial flux permanent magnet machine. Magnetics, IEEE Transactions on, 45(3), 1760–1763. [CrossRef]
  64. Zhang, S., Tseng, K. J., Vilathgamuwa, D. M., Nguyen, T. D., & Wang, X. Y. (2011). Design of a robust grid interface system for PMSG-based wind turbine generators. Industrial Electronics, IEEE Transactions on, 58(1), 316–328. [CrossRef]
  65. Reggiani, U., Grandi, G., Sancineto, G., Serra, G. (2000). Comparison Between Air-Core and Laminated Iron-Core Inductors in Filtering Applications for Switching Converters. IEEE-CIEP Conference, Acapulco, (MEX), October 15-19, 2000
  66. Mirzaei, M., Mirsalim, M., & Abdollahi, S. E. (2007). Analytical modeling of axial air gap solid rotor induction machines using a quasi-three-dimensional method. Magnetics, IEEE Transactions on, 43(7), 3237–3242. [CrossRef]
  67. Del Ferraro, L., Giulii Capponi, F., Terrigi, R., Caricchi, F., & Honorati, O. (2006, October). Ironless axial flux PM machine with active mechanical flux weakening for automotive applications. In Industry Applications Conference, 2006. 41st IAS Annual Meeting. Conference Record of the 2006 IEEE (Vol. 1, pp. 1–7). IEEE.
  68. Lombard, N. F., & Kamper, M. J. (1999). Analysis and performance of an ironless stator axial flux PM machine. Energy Conversion, IEEE Transactions on, 14(4), 1051–1056. [CrossRef]
  69. Breton, C., Bartolome, J., Benito, J. A., Tassinario, G., Flotats, I., Lu, C. W., & Chalmers, B. J. (2000). Influence of machine symmetry on reduction of cogging torque in permanent-magnet brushless motors. Magnetics, IEEE Transactions on, 36(5), 3819–3823. [CrossRef]
  70. Chen, J. L., & Liu, T. H. (2012). Implementation of a predictive controller for a sensorless interior permanent-magnet synchronous motor drive system.Electric Power Applications, IET, 6(8), 513–525. [CrossRef]
  71. Hosseini, S. M., Agha-Mirsalim, M. & Mirzaei, M. (2008). Design, Prototyping, and Analysis of a Low Cost Axial-Flux Coreless Permanent-Magnet Generator. IEEE Transaction on Magnetics, Vol. 44, No. 1, January 2008 [CrossRef]
  72. Javadi, S., & Mirsalim, M. (2010). Design and analysis of 42-V coreless axial-flux permanent-magnet generators for automotive applications. Magnetics, IEEE Transactions on, 46(4), 1015–1023. [CrossRef]
  73. Kobayashi, H., Doi, Y., Miyata, K. and Minowa, T. (2009). Design of axial-flux permanent magnet coreless generator for the multi-megawatts wind turbines. EWEC2009.
  74. Bumby, J. R., & Martin, R. (2005). Axial-flux permanent-magnet air-cored generator for small-scale wind turbines. IEE Proceedings-Electric Power Applications, 152(5), 1065–1075. [CrossRef]
  75. Mo, W., Zhang, L., Shan, A., Cao, L., Wu, J., & Komuro, M. (2008). Improvement of magnetic properties and corrosion resistance of NdFeB magnets by intergranular addition of MgO. Journal of Alloys and Compounds,461(1), 351–354. [CrossRef]
  76. Chan, T. F., & Lai, L. L. (2007). An axial-flux permanent-magnet synchronous generator for a direct-coupled wind-turbine system. Energy Conversion, IEEE Transactions on, 22(1), 86–94. [CrossRef]
  77. K&J Magnetics, Inc. Temperature and Neodymium Magnet. Retrieved from
  78. Drazikowski, L., & Koczara, W. (2011). Permanent magnet disk generator with coreless windings. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 31(1), 108–118. [CrossRef]