Open Access
MATEC Web of Conferences
Volume 38, 2016
UTP-UMP Symposium on Energy Systems 2015 (SES 2015)
Article Number 01008
Number of page(s) 6
Section Thermal Engineering & Energy Conversion
Published online 11 January 2016
  1. A. Sarvaramini and F. Larachi, “Integrated biomass torrefaction Chemical looping combustion as a method to recover torrefaction volatiles energy”, Fuel, vol. 116, pp. 158–167, (2014). [CrossRef]
  2. A. Khan, W. De Jong, P. J. Jansens, and H. Spliethoff, “Biomass combustion in fluidized bed boilers: Potential problems and remedies,” Fuel Process. Technol., vol. 90, no. 1, pp. 21–50, Jan. (2009). [CrossRef]
  3. C. Marculescu and C. Stan, “Poultry processing industry waste to energy conversion”, Energy Procedia, vol. 6, pp. 550–557, (2011). [CrossRef]
  4. M. Himanen and K. Hänninen, “Bioresource Technology Composting of bio-waste, aerobic and anaerobic sludges – Effect of feedstock on the process and quality of compost,” Bioresour. Technol., vol. 102, no. 3, pp. 2842–2852, (2011). [CrossRef]
  5. J. Werther and T. Ogada, “Sewage sludge combustion,” Prog. Energy Combust. Sci., vol. 25, pp. 55–116, (1999). [CrossRef]
  6. S. Donatello and C. R. Cheeseman, “Recycling and recovery routes for incinerated sewage sludge ash (ISSA ): A review,” Waste Manag., vol. 33, no. 11, pp. 2328–2340, (2013). [CrossRef]
  7. R. Francisca Gómez-Rico Font, A. Fullana, and I. Martín-Gullón, “Thermogravimetric study of different sewage sludges and their relationship with the nitrogen content,” J. Anal. Appl. Pyrolysis, vol. 74, no. 1–2, pp. 421–428, Aug. (2005). [CrossRef]
  8. F. P. Qian, C. S. Chyang, K. S. Huang, and J. Tso, “Combustion and NO emission of high nitrogen content biomass in a pilot-scale vortexing fluidized bed combustor.,” Bioresour. Technol., vol. 102, no. 2, pp. 1892–8, Jan. (2011). [CrossRef]
  9. K. Sirisomboon, V. I. Kuprianov, and P. Arromdee, “Effects of design features on combustion efficiency and emission performance of a biomass-fuelled fluidized-bed combustor,” Chem. Eng. Process. Process Intensif., vol. 49, no. 3, pp. 270–277, Mar. (2010). [CrossRef]
  10. T. Madhiyanon, a Lapirattanakun, P. Sathitruangsak, and S. Soponronnarit, “A novel cyclonic fluidized-bed combustor (ψ-FBC): Combustion and thermal efficiency, temperature distributions, combustion intensity, and emission of pollutants,” Combust. Flame, vol. 146, no. 1–2, pp. 232–245, Jul. (2006). [CrossRef]
  11. V. I. Kuprianov, R. Kaewklum, K. Sirisomboon, P. Arromdee, and S. Chakritthakul, “Combustion and emission characteristics of a swirling fluidized-bed combustor burning moisturized rice husk,” Appl. Energy, vol. 87, no. 9, pp. 2899–2906, Sep. (2010). [CrossRef]
  12. W. Permchart and V. I. Kouprianov, “Emission performance and combustion efficiency of a conical fluidized-bed combustor firing various biomass fuels,” Bioresour. Technol., vol. 92, no. 1, pp. 83–91, Mar. (2004). [CrossRef]
  13. K. Janvijitsakul and V. I. Kuprianov, “Similarity and modeling of axial CO and NO concentration profiles in a fluidized-bed combustor (co-)firing biomass fuels,” Fuel, vol. 87, no. 8–9, pp. 1574–1584, Jul. (2008). [CrossRef]
  14. W. Lin, K. Dam-Johansen, and F. Frandsen, “Agglomeration in bio-fuel fired fluidized bed combustors,” Chem. Eng. J., vol. 96, no. 1–3, pp. 171–185, Dec. (2003). [CrossRef]
  15. P. Thy, B. M. Jenkins, R. B. Williams, C. E. Lesher, and R. R. Bakker, “Bed agglomeration in fluidized combustor fueled by wood and rice straw blends,” Fuel Process. Technol., vol. 91, no. 11, pp. 1464–1485, Nov. (2010). [CrossRef]
  16. M. A. Youssef, S. S. Wahid, M. a. Mohamed, and A. a. Askalany, “Experimental study on Egyptian biomass combustion in circulating fluidized bed,” Appl. Energy, vol. 86, no. 12, pp. 2644–2650, Dec. (2009). [CrossRef]
  17. P. Ninduangdee and V. I. Kuprianov, “Combustion of palm kernel shell in a fluidized bed: Optimization of biomass particle size and operating conditions,” Energy Convers. Manag., vol. 85, pp. 800–808, Sep. (2014). [CrossRef]
  18. P. Arromdee and V. I. Kuprianov, “A comparative study on combustion of sunflower shells in bubbling and swirling fluidized-bed combustors with a cone-shaped bed ଝ,” Chem. Eng. Process. Process Intensif., vol. 62, pp. 26–38, (2012). [CrossRef]
  19. F. Duan, J. Zhang, C. Chyang, Y. Wang, and J. Tso, “Combustion of crushed and pelletized peanut shells in a pilot-scale fluidized-bed combustor with flue gas recirculation”, Fuel Process Technol., vol. 128, pp. 28–35, (2014). [CrossRef]
  20. Z. Sun, J. Shen, B. Jin, and L. Wei, “Combustion characteristics of cotton stalk in FBC,” Biomass and Bioenergy, vol. 34, no. 5, pp. 761–770, May (2010). [CrossRef]
  21. V. I. Kouprianov and W. Permchart, “Emissions from a conical FBC fired with a biomass fuel,” Appl. Energy, vol. 74, no. 3–4, pp. 383–392, Mar. (2003). [CrossRef]
  22. K. V. N. S. Rao and G. V. Reddy, “Effect of secondary air injection on the combustion efficiency of sawdust in a fluidized bed combustor,” Brazilian J. Chem. Eng., vol. 25, no. 01, pp. 129–141, (2008). [CrossRef]
  23. S. Zhu and S. W. Lee, “Co-combustion performance of poultry wastes and natural gas in the advanced Swirling Fluidized Bed Combustor (SFBC).,” Waste Manag., vol. 25, no. 5, pp. 511–8, Jan. (2005). [CrossRef]
  24. D. R. Sudhakar, K. S. Reddy, A. K. Kolar, and B. Leckner, “Fragmentation of wood char in a laboratory scale fluidized bed combustor,” Fuel Process. Technol., vol. 89, no. 11, pp. 1121–1134, Nov. (2008). [CrossRef]
  25. R. Chirone, P. Salatino, F. Scala, R. Solimene, and M. Urciuolo, “Fluidized bed combustion of pelletized biomass and waste-derived fuels,” Combust. Flame, vol. 155, no. 1–2, pp. 21–36, Oct. (2008). [CrossRef]
  26. F. Eldabbagh, a. Ramesh, J. Hawari, W. Hutny, and J. a. Kozinski, “Particle–metal interactions during combustion of pulp and paper biomass in a fluidized bed combustor,” Combust. Flame, vol. 142, no. 3, pp. 249–257, Aug. (2005). [CrossRef]
  27. T. Madhiyanon, P. Sathitruangsak, and S. Soponronnarit, “Co-combustion of rice husk with coal in a cyclonic fluidized-bed combustor (ψ-FBC),” Fuel, vol. 88, no. 1, pp. 132–138, Jan. (2009). [CrossRef]
  28. T. Madhiyanon, P. Sathitruangsak, and S. Soponronnarit, “Co-firing characteristics of rice husk and coal in a cyclonic fluidized-bed combustor (Ψ-FBC) under controlled bed temperatures,” Fuel, vol. 90, no. 6, pp. 2103–2112, Jun. (2011). [CrossRef]
  29. L. W. Xie Jian-jun, Yang Xue-min, Zhanglie, Song Wen-li, “Emissions of SO2, NO and N20 in a circulating fluidized bed combustor during co-firing coal and biomass,” J. Environ. Sci., vol. 19, pp. 109–117, (2007). [CrossRef]
  30. T. Madhiyanon, P. Sathitruangsak, and S. Soponronnarit, “Influences of coal size and coal-feeding location in co-firing with rice husks on performance of a short-combustion-chamber fluidized-bed combustor (SFBC),” Fuel Process. Technol., vol. 92, no. 3, pp. 462–470, Mar. (2011). [CrossRef]
  31. P. Sathitruangsak, T. Madhiyanon, and S. oponronnarit, “Rice husk co-firing with coal in a short-combustion-chamber fluidized-bed combustor (SFBC),” Fuel, vol. 88, no. 8, pp. 1394–1402, Aug. (2009). [CrossRef]
  32. M. Varol, A. T. Atimtay, and H. Olgun, “Emission characteristics of co-combustion of a low calorie and high-sulfur-lignite coal and woodchips in a circulating fluidized bed combustor: Part 2. Effect of secondary air and its location,” Fuel, vol. 130, pp. 1–9, Aug. (2014). [CrossRef]
  33. M. Varol, A. T. Atimtay, H. Olgun, and H. Atakül, “Emission characteristics of co-combustion of a low calorie and high sulfur–lignite coal and woodchips in a circulating fluidized bed combustor: Part 1. Effect of excess air ratio,” Fuel, vol. 117, pp. 792–800, Jan. (2014). [CrossRef]
  34. A. T. Atimtay and H. Topal, “Co-combustion of olive cake with lignite coal in a circulating fluidized bed,” Fuel, vol. 83, no. 7–8, pp. 859–867, May (2004). [CrossRef]
  35. A. T. Atimtay and M. Varol, “Investigation of co-combustion of coal and olive cake in a bubbling fluidized bed with secondary air injection,” Fuel, vol. 88, no. 6, pp. 1000–1008, Jun. (2009). [CrossRef]
  36. Z. Gogebakan, Y. Gogebakan, N. Selçuk, and E. Selçuk, “Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite.,” Bioresour. Technol., vol. 100, no. 2, pp. 1033–6, Jan. (2009). [CrossRef]
  37. D. Boavida, P. Abelha, I. Gulyurtlu, and I. Cabrita, “Co-combustion of coal and non-recyclable paper and plastic waste in a fluidised bed reactor,” Fuel, vol. 82, no. 15–17, pp. 1931–1938, Oct. (2003). [CrossRef]
  38. K. Suksankraisorn, S. Patumsawad, P. Vallikul, B. Fungtammasan, and a Accary, “Co-combustion of municipal solid waste and Thai lignite in a fluidized bed,” Energy Convers. Manag., vol. 45, no. 6, pp. 947–962, Apr. (2004). [CrossRef]
  39. B. Leckner, L.-E.Åmand, K. Lücke, and J. Werther, “Gaseous emissions from co-combustion of sewage sludge and coal/wood in a fluidized bed,” Fuel, vol. 83, no. 4–5, pp. 477–486, Mar. (2004). [CrossRef]
  40. T. Shimizu and M. Toyono, “Emissions of NOx and N2O during co-combustion of dried sewage sludge with coal in a circulating fluidized bed combustor,” Fuel, vol. 86, no. 15, pp. 2308–2315, Oct. (2007). [CrossRef]