Open Access
MATEC Web of Conferences
Volume 35, 2015
2015 4th International Conference on Mechanics and Control Engineering (ICMCE 2015)
Article Number 07001
Number of page(s) 4
Section Applied mechanics
Published online 16 December 2015
  1. J.C. Hunt. Magnetohydrodynamic flow in rectangular ducts. J. Fluid Mech 21, 577 (1965) [CrossRef]
  2. J.A. Shercliff. Steady motion of conducting fluids in pipes under transverse magnetic fields. Proc. Camb. Phil. Soc. 49, 136 (1953) [CrossRef]
  3. JG Wang, GR Liu. A point interpolation meshless method based on radial basis functions. Int. J. Numer. Meth. Eng. 54, 1623 (2002) [CrossRef]
  4. JG Wang, GR Liu. On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput. Method Appl. M. 191, 2611 (2002) [CrossRef]
  5. XH Cai, GH Su, SZ Qiu. Local radial point interpolation method for the fully developed Magnetohydrodynamic flow. Appl. Math. Comput. 217, 4529 (2011) [CrossRef]
  6. L Zhang, OY Jie, XH Zhang. The two-level element free Galerkin method for MHD flow at high Hartmann numbers. Phys. Lett. A 372, 5625 (2008) [CrossRef]
  7. S.L.L. Verardi, JR Cardoso, CC Motta. A solution of two-dimensional Magnetohydrodynamic flow using the finite element method. IEEE Trans. on Magn. 34, 3134 (1998) [CrossRef]
  8. E.J. Kansa. Multiquadrics-A scattered data approximation scheme with application to computational fluid dynamics. Comput Math. Appl. 19, 147 (1990) [CrossRef]
  9. M. Sharan, E.J. Kansa, S Gupta. Application of the multiquadric method for numerical solution of elliptic partial differential equations. Appl. Math. Comput. 84, 275 (1997) [CrossRef]
  10. C. Frank, R. Schaback .Solving partial differential equations by collocation using radial basis functions. Appl. Math. Comput. 93, 73 (1998) [CrossRef]
  11. XH Zhang, J Ouyang, JY Wang. Stabilization meshless method for convection dominated problems. Appl. Math. Mech. 29, 1067 (2008) [CrossRef]