Open Access
MATEC Web of Conferences
Volume 33, 2015
ESOMAT 2015 – 10th European Symposium on Martensitic Transformations
Article Number 03011
Number of page(s) 6
Section NiTi-based alloys
Published online 07 December 2015
  1. S. Subresh, Fatigue of Materials. 2004.
  2. S. Eucken and T. Duerig, “The effects of pseudoelastic prestraining on the tensile behaviour and two-way shape memory effect in aged NiTi,” Acta Metall., vol. 37, no. 8, pp. 2245–2252, 1989. [CrossRef]
  3. P. Sedmák, P. Šittner, J. Pilch, and C. Curfs, “Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction,” Acta Mater., vol. 94, pp. 257–270, 2015. [CrossRef]
  4. K. Melton and O. Mercier, “Fatigue of NITI thermoelastic martensites,” Acta Metall., vol. 27, no. 1, pp. 137–144, 1979. [CrossRef]
  5. P. Šittner, M. Landa, P. Lukáš, and V. Novák, “R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals,” Mech. Mater., vol. 38, no. 5–6, pp. 475–492, 2006. [CrossRef]
  6. S. Miyazaki, K. Mizukoshi, T. Ueki, T. Sakuma, and Y. Liu, “Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires,” Mater. Sci. Eng. A, vol. 273–275, pp. 658–663, Dec. 1999. [CrossRef]
  7. M. F.-X. Wagner and G. Eggeler, “Stress and strain states in a pseudoelastic wire subjected to bending rotation,” Mech. Mater., vol. 38, no. 11, pp. 1012–1025, Nov. 2006. [CrossRef]
  8. A. R. Pelton, J. Fino-Decker, L. Vien, C. Bonsignore, P. Saffari, M. Launey, and M. R. Mitchell, “Rotary-bending fatigue characteristics of medical-grade Nitinol wire.,” J. Mech. Behav. Biomed. Mater., vol. 27, pp. 19–32, Nov. 2013. [CrossRef]
  9. M. Frotscher, P. Nörtershäuser, C. Somsen, K. Neuking, R. Böckmann, and G. Eggeler, “Microstructure and structural fatigue of ultra-fine grained NiTi-stents,” Mater. Sci. Eng. A, vol. 503, no. 1–2, pp. 96–98, Mar. 2009. [CrossRef]
  10. M. Frotscher, K. Neuking, R. Böckmann, K.-D. Wolff, and G. Eggeler, “In situ scanning electron microscopic study of structural fatigue of struts, the characteristic elementary building units of medical stents,” Mater. Sci. Eng. A, vol. 481–482, pp. 160–165, May 2008. [CrossRef]
  11. S. W. Robertson, Stankiewicz, Gong, and R. O. Ritchie, “Cyclic Fatigue of Nitinol,” Proc. Int. Conf. Shape Mem. Superelastic Technol. SMST-2003, 2006.
  12. C. Maletta, E. Sgambitterra, F. Furgiuele, R. Casati, and a. Tuissi, “Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting and hysteresis under cyclic tensile loading,” Int. J. Fatigue, vol. 66, pp. 78–85, 2014. [CrossRef]
  13. C. M. Otsuka, K. Wayman, Shape Memory Materials. Cambridge: Cambridge University Press, 1998.
  14. G. Eggeler, E. Hornbogen, a Yawny, a Heckmann, and M. Wagner, “Structural and functional fatigue of NiTi shape memory alloys,” Mater. Sci. Eng. A, vol. 378, no. 1–2, pp. 24–33, Jul. 2004. [CrossRef]
  15. W. Dixon and A. Mood, “A method for obtaining and analyzing sensitivity data,” J. Am. Stat. …, vol. 43, no. 241, pp. 109–126, 1948. [CrossRef]