Open Access
MATEC Web of Conferences
Volume 28, 2015
2015 the 4th International Conference on Advances in Mechanics Engineering (ICAME 2015)
Article Number 06001
Number of page(s) 6
Section Computer theory and Application Technology
Published online 28 October 2015
  1. Swarnkar, N., Singh, A. P. A. K., & Shankar, R. (2013). A Survey of Load Balancing Techniques in Cloud Computing. International Journal of Engineering, 2(8), 800–804
  2. Lin, C. T. (2013). Comparative Based Analysis of Scheduling Algorithms for Resource Management in Cloud Computing Environment. International Journal of Computer Science and Engineering, 1(1), 17–23
  3. Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimzation. In Proceedings if IEEE international conference on neural networks (Vol. 4, No. 2, pp. 1942–1948).
  4. Shi, Y., & Eberhart, R. (1998, May). A modified particle swarm optimizer. In Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Conference on (pp. 69–73). IEEE.
  5. Chaturvedi, K. T., Pandit, M., & Srivastava, L. (2009). Particle swarm optimization with time varying acceleration coefficients for non-convex economic power dispatch. International Journal of Electrical Power & Energy Systems, 31(6), 249–257. [CrossRef]
  6. Tripathi, P. K., Bandyopadhyay, S., & Pal, S. K. (2007). Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Information Sciences, 177(22), 5033–5049. [CrossRef] [MathSciNet]
  7. Zhan, Z. H., Zhang, J., Li, Y., & Chung, H. H. (2009). Adaptive particle swarm optimization. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 39(6), 1362–1381. [CrossRef]
  8. Liu, H., Abraham, A., & Hassanien, A. E. (2010). Scheduling jobs on computational grids using a fuzzy particle swarm optimization algorithm. Future Generation Computer Systems, 26(8), 1336–1343. [CrossRef]
  9. Xue, S. J., & Wu, W. (2012). Scheduling workflow in cloud computing based on hybrid particle swarm algorithm. TELKOMNIKA Indonesian Journal of Electrical Engineering, 10(7), 1560–1566. [CrossRef]
  10. Chen, R. M., & Wang, C. M. (2011, February). Project scheduling heuristics-based standard PSO for task-resource assignment in heterogeneous grid. In Abstract and Applied Analysis (Vol. 2011). Hindawi Publishing Corporation.
  11. Zhan, S., & Huo, H. (2012). Improved PSO-based Task Scheduling Algorithm in Cloud Computing. Journal of Information & Computational Science, 9(13), 3821–3829.
  12. Wu, Z., Ni, Z., Gu, L., & Liu, X. (2010, December). A revised discrete particle swarm optimization for cloud workflow scheduling. In Computational Intelligence and Security (CIS), 2010 International Conference on (pp. 184–188). IEEE.
  13. Liu, H., Abraham, A., & Hassanien, A. E. (2010). Scheduling jobs on computational grids using a fuzzy particle swarm optimization algorithm. Future Generation Computer Systems, (26(8), 1336–1343. [CrossRef]
  14. Pandey, S., Wu, L., Guru, S. M., & Buyya, R. (2010, April). A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments. In Advanced Information Networking and Applications (AINA), 2010 24th IEEE International Conference on (pp. 400–407). IEEE.
  15. Ratnaweera, A., Halgamuge, S., & Watson, H. C. (2004). Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. Evolutionary Computation, IEEE Transactions on, 8(3), 240–255. [CrossRef]
  16. Xuanping, Z., Du Yuping, Q. G., & Zheng, Q. (2005). Adaptive Particle Swarm Algorithm with Dynamically Changing Inertia Weight. Journal of xi’an jiaotong university, (39, 10), 1039–1042.
  17. Mohammadi-Ivatloo, B., Rabiee, A., Soroudi, A., & Ehsan, M. (2012). Iteration PSO with time varying acceleration coefficients for solving non-convex economic dispatch problems. International Journal of Electrical Power & Energy Systems, 42(1), 508–516. [CrossRef]
  18. Masrom, S., Abidin, S. Z., Omar, N., & Nasir, K. (2013). Time-Varying mutation in particle swarm optimization. In Intelligent Information and Database Systems (pp. 31–40). Springer Berlin Heidelberg.
  19. Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011). CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and Experience, 41(1), 23–50 [CrossRef]