Open Access
MATEC Web of Conferences
Volume 27, 2015
2015 4th International Conference on Engineering and Innovative Materials (ICEIM 2015)
Article Number 02002
Number of page(s) 6
Section Novel materials and properties
Published online 20 October 2015
  1. Q. P. Pham, U. Sharma and A. G. Mikos, Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review, Tissue Engineering 12 (2006) 1197–211. [CrossRef] [PubMed]
  2. H. W. Kim, H. E. Kim and J. C. Knowles, Production and Potential of Bioactive Glass Nanofibers as a Next-Generation Biomaterial, Advanced Functional Materials 16 (2006) 1529–1535. [CrossRef]
  3. D. H. Reneker and I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology 7 (1996) 216–223. [CrossRef]
  4. N. Bhardwaj and S. C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnology Advances 28 (2010) 325–347. [CrossRef]
  5. A. Theron, E. Zussman and A. Yarin, Electrostatic field-assisted alignment of electrospun nanofibres, Nanotechnology 12 (2001) 384–390. [CrossRef]
  6. C.-C. Liao, C.-C. Wang, K.-C. Shih and C.-Y. Chen, Electrospinning fabrication of partially crystalline bisphenol A polycarbonate nanofibers: Effects on conformation, crystallinity, and mechanical properties, European Polymer Journal 47 (2011) 911–924. [CrossRef]
  7. P. Katta, M. Alessandro, R. D. Ramsier and G. G. Chase, Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector, Nano Letters 4 (2004) 2215–2218. [CrossRef]
  8. R. Dersch, T. Liu, A. K. Schaper, A. Greiner and J. H. Wendorff, Electrospun nanofibers: Internal structure and intrinsic orientation, Journal of Polymer Science Part A: Polymer Chemistry 41 (2003) 545–553. [CrossRef]
  9. A. Cipitria, A. Skelton, T. R. Dargaville, P. D. Dalton and D. W. Hutmacher, Design, fabrication and characterization of PCL electrospun scaffolds – A review, Journal of Materials Chemistry 21 (2011) 9419–9453. [CrossRef]
  10. R. Langer and J. P. Vacanti, Tissue engineering, Science 260 (1993) 920–6. [CrossRef] [PubMed]
  11. W.-J. Li, R. L. Mauck, J. A. Cooper, X. Yuan and R. S. Tuan, Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering, Journal of Biomechanics 40 (2007) 1686–1693. [CrossRef]
  12. N. L. Nerurkar, S. Sen, A. H. Huang, D. M. Elliott and R. L. Mauck, Engineered disc-like angle-ply structures for intervertebral disc replacement, Spine 35 (2010) 867–873. [CrossRef]
  13. R. M. Seldes, V. Tan, J. Hunt, M. Katz, R. Winiarsky and J. Robert H. Fitzgerald, Anatomy, Histologic Features, and Vascularity of the Adult Acetabular Labrum, Clinical Orthopaedics and Related Research 382 (2001) 232–240.
  14. M. Benjamin and E. J. Evans, Fibrocartilage, Journal of Anatomy 171 (1990) 1–15.
  15. M. Benjamin and J. R. Ralphs, Fibrocartilage in tendons and ligaments - an adaptation to compressive load, Journal of Anatomy 193 (1998) 481–494. [CrossRef]
  16. L. Koepsell, T. Remund, J. Bao, D. Neufeld, H. Fong and Y. Deng, Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers, Journal of Biomedical Materials Research Part A 99A (2011) 564–575. [CrossRef]
  17. B. M. Baker and R. L. Mauck, The effect of nanofiber alignment on the maturation of engineered meniscus constructs, Biomaterials 28 (2007) 1967–1977. [CrossRef]
  18. N. L. Nerurkar, W. Han, R. L. Mauck and D. M. Elliott, Homologous structure–function relationships between native fibrocartilage and tissue engineered from MSC-seeded nanofibrous scaffolds, Biomaterials 32 (2011) 461–468. [CrossRef]
  19. D. Li, Y. Wang and Y. Xia, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays, Nano Letters 3 (2003) 1167–1171. [CrossRef]
  20. B. Sundaray, V. Subramanian, T. S. Natarajan, R.-Z. Xiang, C.-C. Chang and W.-S. Fann, Electrospinning of continuous aligned polymer fibers, Applied Physics Letters 84 (2004) 1222–1224. [CrossRef]
  21. P. D. Dalton, D. Klee and M. Möller, Electrospinning with dual collection rings, Polymer 46 (2005) 611–614. [CrossRef]
  22. M. R. Badrossamay, H. A. McIlwee, J. A. Goss and K. K. Parker, Nanofiber Assembly by Rotary Jet-Spinning, Nano Letters 10 (2010) 2257–2261. [CrossRef]
  23. C.-C. Liao, C.-C. Wang and C.-Y. Chen, Stretchinginduced crystallinity and orientation of polylactic acid nanofibers with improved mechanical properties using an electrically charged rotating viscoelastic jet, Polymer 52 (2011) 4303–4318. [CrossRef]
  24. C.-C. Liao, C.-C. Wang, C.-Y. Chen and W.-J. Lai, Stretching-induced orientation of polyacrylonitrile nanofibers by an electrically rotating viscoelastic jet for improving the mechanical properties, Polymer 52 (2011) 2263–2275. [CrossRef]
  25. D. Hutmacher, M. B. Hürzeler and H. Schliephake, A Review of Material Properties of Biodegradable and Bioresorbable Polymers and Devices for GTR and GBR Applications, International Journal of Oral and Maxillofacial Implants 11 (1996) 667–678.
  26. M. A. Woodruff and D. W. Hutmacher, The return of a forgotten polymer—Polycaprolactone in the 21st century, Progress in Polymer Science 35 (2010) 1217–1256. [CrossRef]
  27. M. V. Kakade, S. Givens, K. Gardner, K. H. Lee, D. B. Chase and J. F. Rabolt, Electric Field Induced Orientation of Polymer Chains in Macroscopically Aligned Electrospun Polymer Nanofibers, Journal of the American Chemical Society 129 (2007) 2777–2782. [CrossRef]
  28. T. Kongkhlang, K. Tashiro, M. Kotaki and S. Chirachanchai, Electrospinning as a New Technique To Control the Crystal Morphology and Molecular Orientation of Polyoxymethylene Nanofibers, Journal of the American Chemical Society 130 (2008) 15460–15466. [CrossRef]
  29. A. Thorvaldsson, H. Stenhamre, P. Gatenholm and P. Walkenström, Electrospinning of Highly Porous Scaffolds for Cartilage Regeneration, Biomacromolecules 9 (2008) 1044–1049. [CrossRef]
  30. C. D. Smith, S. Masouros, A. M. Hill, A. A. Amis and A. M. J. Bull, A biomechanical basis for tears of the human acetabular labrum, British Journal of Sports Medicine 43 (2009) 574–578. [CrossRef]
  31. T. Ishiko, M. Naito and S. Moriyama, Tensile properties of the human acetabular labrum-the first report, Journal of Orthopaedic Research 23 (2005) 1448–53. [CrossRef]
  32. W. Petersen, F. Petersen and B. Tillmann, Structure and vascularization of the acetabular labrum with regard to the pathogenesis and healing of labral lesions, Archives of Orthopaedic and Trauma Surgery 123 (2003) 283–288. [CrossRef]