Open Access
MATEC Web of Conferences
Volume 16, 2014
CSNDD 2014 - International Conference on Structural Nonlinear Dynamics and Diagnosis
Article Number 07004
Number of page(s) 6
Section Aerospace and naval structures: mathematical modeling, nonlinear dynamical behavior and control designs
Published online 01 September 2014
  1. J.M. Cameron and W.J. Book, Modeling mechanisms with nonholonomic joints using the Boltzmann-Hamel equations, Int. J.Robot. Res. 16(1):47–59 (1997) [CrossRef]
  2. J.G. Papastavridis, On the Boltzmann–Hamel equations of motion: a vectorial treatment, J. Appl. Mech. 61:453–459 (1994) [CrossRef]
  3. E. Jarzębowska, Quasi-coordinates based dynamics modeling and control design for nonholonomic systems, Nonlin. Anal. 16(16):1741–1754, (2008)
  4. E. Jarzębowska, Model-based tracking control of nonlinear systems (CRC Press, Boca Raton 2012) [CrossRef]
  5. E. Jarzębowska, Advanced Programmed Motion Tracking Control of Nonholonomic Mechanical Systems, IEEE Trans. Robot., 24(6):1315–1328 (2008) [CrossRef]
  6. F. Lewis, D.M. Dowson and Ch.T. Abdallach, Robot manipulator control, theory and practice (Marcel Dekker Inc., New York 2004)
  7. H.G. Kwatny and G.L. Blankenship, Nonlinear control and analytical mechanics. A computational approach, (Boston: Birkhauser, 2000) [CrossRef]
  8. A.M. Bloch, Nonholonomic mechanics and control, 24 Interdisciplinary applied mathematics (Springer 2003) [CrossRef]
  9. L.S. Crawford and S.S. Sastry, Biological motor control approaches for a planar diver. Proc. Conf. Decision Control, 3881–3886 (1995)
  10. K.C. Koh and H.S. Cho, A smooth path tracking algorithm for wheeled mobile robots with dynamic constraints, J. Intell. Robot. Syst., 24:367–385 (1999) [CrossRef]
  11. A. Scheuer and Ch. Laugier, Planning sub-optimal and continuous-curvature paths for car-like robots, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 25–31 (1998)
  12. Z. Vafa, Space manipulator motion with no satellite attitude disturbances, Proc. IEEE Int. Conf. Robot. Automat., 1770–1775 (1991)
  13. G. Grioli, Particular solutions in stereodynamics, Centro Intern. Matem. Estivo, Roma, 1–65 (1972) (in Italian)
  14. P. Appell, Exemple de mouvement d’un point assujeti a une liason exprimee par une relation Non lineaire entre les composantes de la vitesse, Comptes Renduss, 48–50 (1911)
  15. H. Beghuin, Course de mecanique (Paris 1947)
  16. R. Seifried, Dynamics of underactuated multibody systems: Modeling, control and optimal design (Solid mechanics and its applications), (Springer, New York 2013)
  17. S. Macfarlane and E. Croft, Manipulator trajectory planning: design for real-time applications, IEEE Trans. Robot. Automat., 19, 1:42–51 (2003) [CrossRef]
  18. W. Chee, M. Tomizuka, S. Patwardhan et. al, Experimental study of lane change maneuver for AHS applications, Proc. Am. Control Conf., 1:139–143 (1995)
  19. G. Oriolo, A. De Luca and M. Vendittelli, WMR control via dynamic feedback linearization: Design, implementation, and experimental validation, IEEE Trans. Contr. Systems Techn., 10(6):835–852 (2002) [CrossRef]
  20. Yu.K. Zotov and A.V. Tomofeyev, Controllability and stabilization of programmed motions of reversible mechanical and electromechanical systems, J. Appl. Math. Mech. 56 (6):873–880 (1992) [CrossRef]
  21. Yu.K. Zotov, Controllability and stabilization of programmed motions of an automobile-type transport robot, J. Appl. Maths. Mech. 67 (3):303–327 (2003) [CrossRef]
  22. J.I. Nejmark and N.A. Fufaev, Dynamics of nonholonomic systems. Am. Math. Soc. (Providence, Rhode Island 1972)