Open Access
MATEC Web of Conferences
Volume 16, 2014
CSNDD 2014 - International Conference on Structural Nonlinear Dynamics and Diagnosis
Article Number 04002
Number of page(s) 4
Section Nonlinear dynamics of MEMS/NEMS/AFM
Published online 01 September 2014
  1. J. Kupnizky, Nanostructures studied by AFM, Thesis from Acta University (2003).
  2. B. Anczykowski, D. Krüger, H. Fuchs, Cantilever dynamics in quasinon-contact force microscopy: Spectroscopic aspects, Phys. Rev. B, 53, 1996, 485–488. [CrossRef]
  3. A. Kühle, A.H. Soerensen, J. Bohr, Role of attractive forces in tapping tip force microscopy, J. Appl. Phys. 81, 1997, 6562–6569. [CrossRef]
  4. R.W. Stark, Bistability, higher harmonics, and chaos in AFM, Materials Today, 13, 2010, 24–32. [CrossRef]
  5. M. Tsukada, N. Sasaki, R. Yamura, N. Sato, K. Abe, Features of cantilever motion in dynamic-mode AFM, Surf. Sci. 401, 1998, 355–363. [CrossRef]
  6. M. Lee, W. Jhe, General theory of amplitude-modulation atomic force microscopy, Phys. Rev. Lett, 97, 2006, id. 036104.
  7. S. Rützel, S.I. Lee, A. Raman, Nonlinear dynamics of atomic-force microscope probes driven in Lennard-Jones potentials, Proc. R. Soc. Lond, 459, 2003, 1925–1948. [CrossRef]
  8. K. Yamasue, T. Hikihara, Contol of microcantilevers in dynamic force microscopyusing time delayed feedback, Rev. Sci. Instrum, 77, 2006, 1–6. [CrossRef]
  9. H. Sadeghian, M.T. Arjmand, H. Salarieh, A. Alasty, Chaos control in single mode approximation of TAFM systems using nonlinear delayed feedback based on sliding mode control. In: Proceedings of the ASME 2007 International Design and Engineering Technical Conference and Computers and Information in Engineering Conference, Las Vegas, NV (2007).
  10. R.W. Stark, Time delay Q-control of the microcantilever in dynamic atomic force microscopy. In: Proceedings of 2005 5th IEEE Conference on Nanotechnology, Nagoya, Japan, (2005).
  11. F.M. Alsaleem and M.I. Younis, Integrity Analysis of Electrically Actuated Resonators With Delayed Feedback Controller, Journal of Dynamic Systems, Measurement, and Control, 133, 2013, 031011. [CrossRef]
  12. F.M. Alsaleemand and M.I. Younis, Stabilizationofelectrostatic MEMS resonators using a delayed feedback controller, Smart Materials and Structures, 19, 2010, 035016. [CrossRef]
  13. K. Yamasue, K. Kobayashib, H. Yamada, K. Matsushige, T. Hikihara, Controlling chaos in dynamic-mode atomic force microscope, Phys. Lett. A, 373, 2009, 3140. [CrossRef]
  14. K. Pyragas, A. Tamaoevièius, Continuous control of chaos by self-controlling feedback, Phys. Lett.A, 170, 1992, 421–428. [CrossRef]
  15. I.I. Blekhman, Vibrational Mechanics-Nonlinear Dynamic Effects, General Approach, Application. Singapore: World Scientific (2000).
  16. J.J. Thomsen, Vibrations and Stability: Advanced Theory, Analysis, and Tools. Springer-Verlag, Berlin-Heidelberg (2003).
  17. A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations. NewYork: Wiley (1979).
  18. A.H. Nayfeh, Introduction to Perturbation Techniques. NewYork:Wiley(1981).